Risk neutral dynamics of spot and forward electricity prices

- Joint work with J.-M. Marin & N. Touzi -

Luciano Campi

CEREMADE, Laboratoire FiME (Paris-Dauphine)
Introduction

The Model

Electricity forward prices

Constant coefficients

What’s next

Luciano Campi

Risk neutral dynamics of spot and forward electricity prices

CEREMADE, Laboratoire FiME (Paris-Dauphine)
Introduction I : Motivations

- In standard financial markets: $F_t(T) = S_t e^{r(T-t)}$. This equality relies heavily on costless storability of financial assets, it breaks down when S_t is spot price of electricity.

- A priori, no relations between spot and forward at least in a market composed of electricity and bank account (see, e.g., Geman-Vasicek (2001)).

- Geman-Vasicek (2001) and Bessembinder-Lemon (2002) show that short-term forward contract are (upward- or downward-) biased estimator of spot prices, so ...

- ... in mathematical terms, when $t \uparrow T$, $F_t(T)$ does not necessarily tend to S_T.

<table>
<thead>
<tr>
<th>Luciano Campi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEREMADE, Laboratoire FiME (Paris-Dauphine)</td>
</tr>
</tbody>
</table>
Introduction I : Motivations

- In standard financial markets: $F_t(T) = S_t e^{r(T-t)}$. This equality relies heavily on costless storability of financial assets, it breaks down when S_t is spot price of electricity.

- A priori, no relations between spot and forward at least in a market composed of electricity and bank account (see, e.g., Geman-Vasicek (2001)).

- Geman-Vasicek (2001) and Bessembinder-Lemon (2002) show that short-term forward contract are (upward- or downward-) biased estimator of spot prices, so ...

- ... in mathematical terms, when $t \uparrow T$, $F_t(T)$ does not necessarily tend to S_T.
Introduction I: Motivations

- In standard financial markets: \(F_t(T) = S_t e^{r(T-t)} \). This equality relies heavily on costless storability of financial assets, it breaks down when \(S_t \) is spot price of electricity.

- A priori, no relations between spot and forward at least in a market composed of electricity and bank account (see, e.g., Geman-Vasicek (2001)).

- Geman-Vasicek (2001) and Bessembinder-Lemon (2002) show that short-term forward contract are (upward- or downward-) biased estimator of spot prices, so ...

- ... in mathematical terms, when \(t \uparrow T \), \(F_t(T) \) does not necessarily tend to \(S_T \).
Introduction I: Motivations

- In standard financial markets: $F_t(T) = S_t e^{r(T-t)}$. This equality relies heavily on costless storability of financial assets, it breaks down when S_t is spot price of electricity.

- A priori, no relations between spot and forward at least in a market composed of electricity and bank account (see, e.g., Geman-Vasicek (2001)).

- Geman-Vasicek (2001) and Bessembinder-Lemon (2002) show that short-term forward contract are (upward- or downward-) biased estimator of spot prices, so ...

- ... in mathematical terms, when $t \uparrow T$, $F_t(T)$ does not necessarily tend to S_T.

Luciano Campi
CEREMADE, Laboratoire FiME (Paris-Dauphine)
Nevertheless, imagine an fictitious economy where electricity is produced only out of coal, so that electricity spot price $P_t = c_c S_t^c$, and agents can trade coal, buy electricity and have a bank account.

Assume no-arbitrage in the market of coal and bank account, i.e. there exists a risk-neutral measure Q for \(\tilde{S}_t^c = e^{-rt} S_t^c \).

A forward contract on spot electricity P_T can be viewed as a contract on coal necessary to produce 1 MWh of electricity, with price $c_c S_t^c$, so that

$$F_0^c(T) = \mathbb{E}_Q[P_T] = \mathbb{E}_Q[c_c S_T^c] = c_c F_0^c(T)$$
Nevertheless, imagine an fictitious economy where electricity is produced only out of coal, so that electricity spot price $P_t = c_c S^c_t$, and agents can trade coal, buy electricity and have a bank account.

Assume no-arbitrage in the market of coal and bank account, i.e. there exists a risk-neutral measure Q for $\tilde{S}^c_t = e^{-rt} S^c_t$.

A forward contract on spot electricity P_T can be viewed as a contract on coal necessary to produce 1 MWh of electricity, with price $c_c S^c_T$, so that

$$F^e_0(T) = \mathbb{E}_Q[P_T] = \mathbb{E}_Q[c_c S^c_T] = c_c F^c_0(T)$$
Nevertheless, imagine an fictitious economy where electricity is produced only out of coal, so that electricity spot price \(P_t = c_c S_t^c \), and agents can trade coal, buy electricity and have a bank account.

Assume no-arbitrage in the market of coal and bank account, i.e. there exists a risk-neutral measure \(Q \) for \(\tilde{S}_t^c = e^{-rt} S_t^c \).

A forward contract on spot electricity \(P_T \) can be viewed as a contract on coal necessary to produce 1 MWh of electricity, with price \(c_c S_t^c \), so that

\[
F_0^e(T) = \mathbb{E}_Q[P_T] = \mathbb{E}_Q[c_c S_T^c] = c_c F_0^c(T)
\]
The Model

- **Randomness**: \((W^0, W) = (W^0, W^1, \ldots, W^n)\) Wiener process defined on a given \((\Omega, \mathcal{F}, \mathbb{P})\) and \(\mathcal{F}_t = \mathcal{F}_t^0 \vee \mathcal{F}_t^W\) models the market information flow.

- Riskless asset \(S^0_t = \exp \int_0^t r_u du, t \geq 0, r\) is \(\mathcal{F}_t^0\)-adapted and \(\geq 0\).

- **Commodities market**: \(n \geq 1\) commodities (coal, gas, ...) whose prices \(S^i\) to produce 1 MWh of electricity follows

\[
dS^i_t = S^i_t (\mu^i_t dt + \sum_j \sigma^i_j dW^j_t), \quad t \geq 0.
\]

For simplicity, assume that convenience yields \(y^i = 0\) for all \(i = 1, \ldots, n\).

- **Electricity demand**: \(D = (D_t)_{t \geq 0}\) \(\mathcal{F}_t^0\)-adapted, positive process; notice that \(D\) is independent of each \(S^i\).
The Model

- **Randomness**: \((W^0, W) = (W^0, W^1, \ldots, W^n)\) Wiener process defined on a given \((\Omega, \mathcal{F}, \mathbb{P})\) and \(\mathcal{F}_t = \mathcal{F}_t^0 \lor \mathcal{F}_t^W\) models the market information flow.
- **Riskless asset** \(S_t^0 = \exp \int_0^t r_u du, \; t \geq 0, \; r\) is \(\mathcal{F}_t^0\)-adapted and \(\geq 0\).
- **Commodities market**: \(n \geq 1\) commodities (coal, gas, ...) whose prices \(S^i\) to produce 1 MWh of electricity follows
 \[dS^i_t = S^i_t(\mu^i_t dt + \sum_j \sigma^i_j dW^j_t), \; t \geq 0.\]

 For simplicity, assume that convenience yields \(y^i = 0\) for all \(i = 1, \ldots, n\).
- **Electricity demand**: \(D = (D_t)_{t \geq 0}\) \(\mathcal{F}_t^0\)-adapted, positive process; notice that \(D\) is independent of each \(S^i\).
The Model

- **Randomness**: $(W^0, W) = (W^0, W^1, \ldots, W^n)$ Wiener process defined on a given $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{F}_t = \mathcal{F}_t^0 \vee \mathcal{F}_t^W$ models the market information flow.

- **Riskless asset** $S^0_t = \exp \int_0^t r_u du, \ t \geq 0$, r is \mathcal{F}_t^0-adapted and ≥ 0.

- **Commodities market**: $n \geq 1$ commodities (coal, gas, ...) whose prices S^i to produce 1 MWh of electricity follows
 \[
 dS^i_t = S^i_t(\mu^i_t dt + \sum_j \sigma^i_j dW^j_t), \quad t \geq 0.
 \]
 For simplicity, assume that convenience yields $y^i = 0$ for all $i = 1, \ldots, n$.

- **Electricity demand**: $D = (D_t)_{t \geq 0}$ \mathcal{F}_t^0-adapted, positive process; notice that D is independent of each S^i.
The Model

- **Randomness**: \((W^0, W) = (W^0, W^1, \ldots, W^n)\) Wiener process defined on a given \((\Omega, \mathcal{F}, \mathbb{P})\) and \(\mathcal{F}_t = \mathcal{F}^0_t \vee \mathcal{F}^W_t\) models the market information flow.

- Riskless asset \(S^0_t = \exp \int_0^t r_u du, \ t \geq 0, \ r\) is \(\mathcal{F}^0_t\)-adapted and \(\geq 0\).

- **Commodities market**: \(n \geq 1\) commodities (coal, gas, ...) whose prices \(S^i\) to produce 1 MWh of electricity follows

\[
 dS^i_t = S^i_t(\mu^i_t dt + \sum_{j} \sigma^i_j dW^j_t), \quad t \geq 0.
\]

For simplicity, assume that convenience yields \(y^i = 0\) for all \(i = 1, \ldots, n\).

- **Electricity demand**: \(D = (D_t)_{t \geq 0}\) \(\mathcal{F}^0_t\)-adapted, positive process; notice that \(D\) is independent of each \(S^i\).
Electricity spot price P_t when all technologies are available:

- $\Delta_i > 0$ denotes the capacity of i-th commodity for electricity at every instant, a constant known to the producer.

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W-adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$.

- Look at the demand D_t:

$$D_t \in l^\pi_{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta_{\pi_t(i)}, \sum_{i=1}^{k} \Delta_{\pi_t(i)} \right] \Rightarrow P_t = S_t^{(k)}$$

- ... so that $P_t = \sum_k S_t^{(k)} 1_{l^\pi_{\pi_t}}(D_t)$ for $t \geq 0$.
Electricity spot price P_t when all technologies are available:

- $\Delta_i > 0$ denotes the capacity of i-th commodity for electricity at every instant, a constant known to the producer.

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W-adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$.

- Look at the demand D_t:

$$D_t \in l_{\pi_t}^k := \left[\sum_{i=1}^{k-1} \Delta_{\pi_t(i)}, \sum_{i=1}^{k} \Delta_{\pi_t(i)} \right] \Rightarrow P_t = S_t^{(k)}$$

- So that $P_t = \sum_k S_t^{(k)} 1_{l_{\pi_t}^k}(D_t)$ for $t \geq 0$.
Electricity spot price P_t when all technologies are available:

- $\Delta_i > 0$ denotes the capacity of i-th commodity for electricity at every instant, a constant known to the producer.

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an $\mathcal{F}_t^\mathcal{W}$-adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$.

- Look at the demand D_t:

$$D_t \in I_k^{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta_{\pi_t(i)}, \sum_{i=1}^{k} \Delta_{\pi_t(i)} \right] \Rightarrow P_t = S_t^{(k)}$$

- ... so that $P_t = \sum_k S_t^{(k)} 1_{I_k^{\pi_t}}(D_t)$ for $t \geq 0$.
Electricity spot price P_t when all technologies are available:

- $\Delta_i > 0$ denotes the capacity of i-th commodity for electricity at every instant, a constant known to the producer.
- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W-adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$.
- Look at the demand D_t:

$$D_t \in I_k^{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta_{\pi_t(i)}, \sum_{i=1}^{k} \Delta_{\pi_t(i)} \right] \Rightarrow P_t = S_t^{(k)}$$

- So that $P_t = \sum_k S_t^{(k)} 1_{I_k^{\pi_t}}(D_t)$ for $t \geq 0$.

Introduction

The Model

Electricity forward prices

Constant coefficients

What's next
Technologies failures I: The case of two commodities

If $n=2$ we have $S^1_t \leq S^2_t$ or $S^2_t \leq S^1_t$, let's consider the first case $\pi_t = \{1, 2\}$.

Introduce two r.v.'s ϵ^i_t, $i = 1, 2$ such that

- $\epsilon^i_t = 1$ when technology i is available, otherwise $\epsilon^i_t = 0$
- $\epsilon^i_t = 0$ implies that $\epsilon^j_t = 1$ for $i \neq j$

Only three cases may happen at each time t

1. $\epsilon^1_t = \epsilon^2_t = 1$ then $P_t = S^1_t 1_{[0,\Delta_1]}(D_t) + S^2_t 1_{[\Delta_1,\Delta_1+\Delta_2]}(D_t)$
2. $\epsilon^1_t = 1$, $\epsilon^2_t = 0$ then $P_t = S^1_t 1_{[0,\Delta_1]}(D_t)$
3. $\epsilon^1_t = 0$, $\epsilon^2_t = 1$ then $P_t = S^2_t 1_{[0,\Delta_1+\Delta_2]}(D_t)$

To sum up:

$$P_t = S^1_t 1_{[0,\Delta_1 \epsilon^1_t]}(D_t) + S^2_t 1_{[\Delta_1 \epsilon^1_t,\Delta_1 \epsilon^1_t+\Delta_2 \epsilon^2_t]}(D_t)$$
Technologies failures I : The case of two commodities

- If $n = 2$ we have $S_t^1 \leq S_t^2$ or $S_t^2 \leq S_t^1$, let's consider the first case $\pi_t = \{1, 2\}$

- Introduce two r.v.'s ϵ^i_t, $i = 1, 2$ such that
 - $\epsilon^i_t = 1$ when technology i is available, otherwise $\epsilon^i_t = 0$
 - $\epsilon^i_t = 0$ implies that $\epsilon^j_t = 1$ for $i \neq j$

- Only three cases may happen at each time t
 1. $\epsilon^1_t = \epsilon^2_t = 1$ then $P_t = S_t^1 1_{[0,\Delta_1]}(D_t) + S_t^2 1_{[\Delta_1,\Delta_1+\Delta_2]}(D_t)$
 2. $\epsilon^1_t = 1$, $\epsilon^2_t = 0$ then $P_t = S_t^1 1_{[0,\Delta_1]}(D_t)$
 3. $\epsilon^1_t = 0$, $\epsilon^2_t = 1$ then $P_t = S_t^2 1_{[0,\Delta_1+\Delta_2]}(D_t)$

- To sum up:
 $$P_t = S_t^1 1_{[0,\Delta_1 \epsilon^1_t]}(D_t) + S_t^2 1_{[\Delta_1 \epsilon^1_t,\Delta_1 \epsilon^1_t+\Delta_2 \epsilon^2_t]}(D_t)$$
Technologies failures I: The case of two commodities

- If \(n = 2 \) we have \(S_t^1 \leq S_t^2 \) or \(S_t^2 \leq S_t^1 \), let's consider the first case \(\pi_t = \{1, 2\} \).

- Introduce two r.v.'s \(\epsilon_t^i, i = 1, 2 \) such that
 - \(\epsilon_t^i = 1 \) when technology \(i \) is available, otherwise \(\epsilon_t^i = 0 \)
 - \(\epsilon_t^i = 0 \) implies that \(\epsilon_t^j = 1 \) for \(i \neq j \)

- Only three cases may happen at each time \(t \):
 1. \(\epsilon_t^1 = \epsilon_t^2 = 1 \) then \(P_t = S_t^1 1_{[0,\Delta_1]}(D_t) + S_t^2 1_{[\Delta_1,\Delta_1+\Delta_2]}(D_t) \)
 2. \(\epsilon_t^1 = 1, \epsilon_t^2 = 0 \) then \(P_t = S_t^1 1_{[0,\Delta_1]}(D_t) \)
 3. \(\epsilon_t^1 = 0, \epsilon_t^2 = 1 \) then \(P_t = S_t^2 1_{[0,\Delta_1+\Delta_2]}(D_t) \)

- To sum up:
 \[
P_t = S_t^1 1_{[0,\Delta_1\epsilon_t^1]}(D_t) + S_t^2 1_{[\Delta_1\epsilon_t^1,\Delta_1\epsilon_t^1+\Delta_2\epsilon_t^2]}(D_t)\]
Technologies failures I: The case of two commodities

- If \(n = 2 \) we have \(S^1_t \leq S^2_t \) or \(S^2_t \leq S^1_t \), let’s consider the first case \(\pi_t = \{1, 2\} \)

- Introduce two r.v.’s \(\epsilon^i_t, i = 1, 2 \) such that
 - \(\epsilon^i_t = 1 \) when technology \(i \) is available, otherwise \(\epsilon^i_t = 0 \)
 - \(\epsilon^i_t = 0 \) implies that \(\epsilon^j_t = 1 \) for \(i \neq j \)

- Only three cases may happen at each time \(t \)
 1. \(\epsilon^1_t = \epsilon^2_t = 1 \) then \(P_t = S^1_t 1_{[0,\Delta_1]}(D_t) + S^2_t 1_{[\Delta_1,\Delta_1+\Delta_2]}(D_t) \)
 2. \(\epsilon^1_t = 1, \epsilon^2_t = 0 \) then \(P_t = S^1_t 1_{[0,\Delta_1]}(D_t) \)
 3. \(\epsilon^1_t = 0, \epsilon^2_t = 1 \) then \(P_t = S^2_t 1_{[0,\Delta_1+\Delta_2]}(D_t) \)

- To sum up:
 \[P_t = S^1_t 1_{[0,\Delta_1\epsilon^1_t]}(D_t) + S^2_t 1_{[\Delta_1\epsilon^1_t,\Delta_1\epsilon^1_t+\Delta_2\epsilon^2_t]}(D_t) \]
Technologies failures II : The general case

- Let η be a new process, values in $\{0, 1, \ldots, n\}$, with interpretation
 - event $\{\eta_t = i\}$ means “i-th technology not available”, for $1 \leq i \leq n$
 - event $\{\eta_t = 0\}$ means that all technologies are available

 Hidden assumption: only one failure at the time is allowed.

- Define $\epsilon^i_t := 1_{\{\eta_t \neq i\}}$, $1 \leq i \leq n$, so that
 - $\epsilon^i_t = 1$ means “i-th technology available at time t"
 - $\epsilon^i_t = 0$ means “i-th technology not available at time t"

- Set $l^{\pi_t}_k(t) := \left[\sum_{i=1}^{k-1} \Delta \pi_t(i) \epsilon^i_t \pi_t(i), \sum_{i=1}^k \Delta \pi_t(i) \epsilon^i_t \pi_t(i)\right]

- ... so that $P_t = \sum_k S_t^{(k)} 1_{l^{\pi_t}_k(t)}$ for $t \geq 0$.
Technologies failures II : The general case

- Let η be a new process, values in $\{0, 1, \ldots, n\}$, with interpretation
 - event $\{\eta_t = i\}$ means “i-th technology not available”, for $1 \leq i \leq n$
 - event $\{\eta_t = 0\}$ means that all technologies are available

 Hidden assumption: only one failure at the time is allowed.

- Define $\epsilon^i_t := 1_{\{\eta_t \neq i\}}$, $1 \leq i \leq n$, so that
 - $\epsilon^i_t = 1$ means “i-th technology available at time t"
 - $\epsilon^i_t = 0$ means “i-th technology not available at time t"

- Set $I^{\pi_t}_k(t) := \left(\sum_{i=1}^{k-1} \Delta^{\pi_t}(i) \epsilon^i_t, \sum_{i=1}^{k} \Delta^{\pi_t}(i) \epsilon^i_t \right)$

- ... so that $P_t = \sum_k S^{(k)}_t 1_{I^{\pi_t}_k(t)}$ for $t \geq 0$.

Luciano Campi
CEREMADE, Laboratoire FiME (Paris-Dauphine)
Technologies failures II: The general case

- Let \(\eta \) be a new process, values in \(\{0, 1, \ldots, n\} \), with interpretation:
 - event \(\{\eta_t = i\} \) means “\(i \)-th technology not available”, for \(1 \leq i \leq n \)
 - event \(\{\eta_t = 0\} \) means that all technologies are available

Hidden assumption: only one failure at the time is allowed.

- Define \(\epsilon^i_t := 1\{\eta_t \neq i\} \), \(1 \leq i \leq n \), so that:
 - \(\epsilon^i_t = 1 \) means “\(i \)-th technology available at time \(t \)"
 - \(\epsilon^i_t = 0 \) means “\(i \)-th technology not available at time \(t \)"

- Set \(l^\pi_k(t) := \left[\sum_{i=1}^{k-1} \Delta^\pi_t(i) \epsilon^i_t, \sum_{i=1}^{k} \Delta^\pi_t(i) \epsilon^i_t \right] \)

- ... so that \(P_t = \sum_k S_t^{(k)} 1_{l^\pi_k(t)} \) for \(t \geq 0 \).
Technologies failures II: The general case

- Let \(\eta \) be a new process, values in \(\{0, 1, \ldots, n\} \), with interpretation
 - event \(\{\eta_t = i\} \) means “\(i \)-th technology not available”, for \(1 \leq i \leq n \)
 - event \(\{\eta_t = 0\} \) means that all technologies are available

 Hidden assumption: only one failure at the time is allowed.

- Define \(\epsilon^i_t := 1_{\{\eta_t \neq i\}} \), \(1 \leq i \leq n \), so that
 - \(\epsilon^i_t = 1 \) means “\(i \)-th technology available at time \(t \)"
 - \(\epsilon^i_t = 0 \) means “\(i \)-th technology not available at time \(t \)"

- Set \(l^\pi_k(t) := \left[\sum_{i=1}^{k-1} \Delta^\pi_t(i) \epsilon^i_t, \sum_{i=1}^{k} \Delta^\pi_t(i) \epsilon^i_t \right] \)

- ... so that \(P_t = \sum_k S_t^{(k)} 1_{l^\pi_k(t)} \) for \(t \geq 0 \).
No-arbitrage assumption on commodities market.

Let $T > 0$. There exists $\mathbb{Q} \sim \mathbb{P}$ on \mathcal{F}_T^W such that:

1. Each \tilde{S}_t^i/S_0 is a \mathbb{Q}-martingale w.r.t. \mathcal{F}_t^W.
2. The laws of W^0 and η do not change.
3. Filtrations $(\mathcal{F}_t^0), (\mathcal{F}_t^W), (\mathcal{F}_t^\eta)$ are \mathbb{Q}-independent.

Remarks

1. Property 3 above is satisfied if W^0, W and η are constructed on the canonical product space and the change of measure affects only the factor where W is defined.
2. Being D not tradable, this market is not complete. We choose \mathbb{Q} as the pricing measure.
The pay-off of a forward contract on spot electricity is

\[P_T = \sum_k S_T^{(k)} \mathbf{1}_{\pi T} (D_T) \] so it can be viewed as an option on commodities.

Use no-arbitrage assumption on commodities to get

\[
F_t(T) = \mathbb{E}^{Q_T}[P_T | \mathcal{F}_t] = \mathbb{E}^{Q_T} \left[\sum_{k=1}^{n} S_T^{(k)} \mathbf{1}_{\pi T} (D_T) | \mathcal{F}_t \right]
\]

where \(Q_T \) is the forward risk-neutral measure on \(\mathcal{F}_T \):

\[
\frac{dQ_T}{dQ} = \frac{\exp \int_t^T r_u du}{\mathbb{E}^Q[\exp \int_t^T r_u du | \mathcal{F}_t]}
\]

(Notice that \(Q_T = Q \) if \(r \) is non-random)
The pay-off of a forward contract on spot electricity is

\[P_T = \sum_k S_T^{(k)} 1_{l_k^T(T)}(D_T) \]

so it can be viewed as an option on commodities.

Use no-arbitrage assumption on commodities to get

\[F_t(T) = \mathbb{E}^{Q_T}[P_T|F_t] = \mathbb{E}^{Q_T}\left[\sum_{k=1}^{n} S_T^{(k)} 1_{l_k^T(T)}(D_T)|F_t \right] \]

where \(Q_T \) is the forward risk-neutral measure on \(F_T \):

\[
\frac{dQ_T}{dQ} = \frac{\exp \int_t^T r_u du}{\mathbb{E}[\exp \int_t^T r_u du|F_t]} \]

(Notice that \(Q_T = Q \) if \(r \) is non-random)
Electricity forward prices II : The main formula

Proposition

Under previous assumptions and if $S^i_T \in L^1(\mathbb{Q}_T)$, $1 \leq i \leq n$: for all $t \in [0, T]$

$$F_t(T) = \sum_{i=1}^{n} \sum_{\pi \in \Pi_n} c_{\pi(i)} F_{\pi(i)}^i(T) \mathbb{Q}_T[D_T \in I_{\pi(i)}^i(T)|\mathcal{F}_t^0]$$

$$\times \mathbb{Q}_T^{\pi(i)}[\pi_T = \pi|\mathcal{F}_t^W]$$

where :

- Π_n is the set of all permutations of $\{1, \ldots, n\}$
- $F^i_t(T)$ is forward price of i-th commodity, delivery date T
- $d\mathbb{Q}_T^{\pi(i)}/d\mathbb{Q}_T = S_T^{\pi(i)}/\mathbb{E}_\mathbb{Q}_T[S_T^{\pi(i)}]$ on \mathcal{F}_t^W
Electricity forward prices II: The main formula

Proposition

Under previous assumptions and if \(S^i_T \in L^1(\mathbb{Q}_T), 1 \leq i \leq n : \) for all \(t \in [0, T] \)

\[
F_t(T) = \sum_{i=1}^{n} \sum_{\pi \in \Pi_n} c_{\pi(i)} F_{t}^{\pi(i)}(T) \mathbb{Q}_T[D_T \in I_{\pi,1}(T) | \mathcal{F}_t^0] \\
\times \mathbb{Q}_T^{\pi(i)}[\pi_T = \pi | \mathcal{F}_t^W]
\]

where:

- \(\Pi_n \) is the set of all permutations of \(\{1, \ldots, n\} \)
- \(F_t^i(T) \) is forward price of \(i \)-th commodity, delivery date \(T \)
- \(d\mathbb{Q}_T^{\pi(i)}/d\mathbb{Q}_T = S_T^{\pi(i)}/\mathbb{E}\mathbb{Q}_T[S_T^{\pi(i)}] \) on \(\mathcal{F}_T^W \)
Electricity forward prices II: The main formula

Proposition

Under previous assumptions and if \(S^i_T \in L^1(\mathbb{Q}_T), \ 1 \leq i \leq n : \) for all \(t \in [0, T] \)

\[
F_t(T) = \sum_{i=1}^{n} \sum_{\pi \in \Pi_n} c_{\pi(i)} F^\pi(i)(T) \mathbb{Q}_T[D_T \in l^\pi_i(T)|\mathcal{F}_t^0] \\
\times \mathbb{Q}_T^{\pi(i)}[\pi_T = \pi|\mathcal{F}_t^W]
\]

where:

- \(\Pi_n \) is the set of all permutations of \(\{1, \ldots, n\} \)
- \(F^i_t(T) \) is forward price of \(i \)-th commodity, delivery date \(T \)
- \(d\mathbb{Q}_T^{\pi(i)}/d\mathbb{Q}_T = S^\pi_T/\mathbb{E}^{\mathbb{Q}_T}[S^\pi_T] \) on \(\mathcal{F}_T^W \)
Electricity forward prices III: some remarks

This model is able to explain three basic features of electricity market as:

- **Observed spikes in electricity spot prices dynamics**
- **Non-convergence of electricity forward prices towards spot (day-ahead) prices as** $t \uparrow T$. Indeed,

$$F_t(T) \rightarrow F_T(T) = \sum_{i=1}^{n} S_T^{(i)} \mathbb{Q}_T[x \in l_i^\pi(T)]|_{x=D_T,\pi=\pi_T}.$$

$$F_T(T) \neq P_T$$ whenever η is non-degenerate.

- **The paths of electricity forward prices are much smoother than the corresponding spot prices.**
The constant coefficients model: more explicit formulae

- Commodities prices S^i follow n-dim Black-Scholes model: volatilities $\sigma_{ij} > 0$ and interest rate $r > 0$ constant so that, in particular, $Q_T = Q$

- $F_t^i(T) = e^{r(T-t)}S_t^i$ for all commodities $1 \leq i \leq n$

- Demand of electricity: D follows a OU process

\[
dD_t = a(b - D_t)dt + \delta dW^0_t, \quad D_0 > 0
\]

with $a, b, \delta > 0$.

- Under these assumptions probabilities $Q[D_T \in I_k^\pi(T) | \mathcal{F}^0_t]$ and $Q_T^{\pi(i)}[\pi_T = \pi | \mathcal{F}^W_t]$ can be computed explicitly as functions of the parameters.
Commodities prices S^i follow n-dim Black-Scholes model: volatilities $\sigma^{ij} > 0$ and interest rate $r > 0$ constant so that, in particular, $Q_T = Q$

$F^i_t(T) = e^{r(T-t)}S^i_t$ for all commodities $1 \leq i \leq n$

Demand of electricity: D follows a OU process

$$dD_t = a(b - D_t)dt + \delta dW^0_t, \quad D_0 > 0$$

with $a, b, \delta > 0$.

Under these assumptions probabilities $Q[D_T \in I_k^\pi(T)|F^0_t]$ and $Q_T^{\pi(i)}[\pi_T = \pi|F^W_t]$ can be computed explicitly as functions of the parameters.
The constant coefficients model: more explicit formulae

- Commodities prices S^i follow n-dim Black-Scholes model: volatilities $\sigma_{ij} > 0$ and interest rate $r > 0$ constant so that, in particular, $Q_T = Q$
- $F^i_t(T) = e^{r(T-t)}S^i_t$ for all commodities $1 \leq i \leq n$
- Demand of electricity: D follows a OU process

$$dD_t = a(b - D_t)dt + \delta dW^0_t, \quad D_0 > 0$$

with $a, b, \delta > 0$.

- Under these assumptions probabilities $Q[D_T \in I^\pi_k(T)|\mathcal{F}_t^0]$ and $Q^{\pi(i)}_T[\pi_T = \pi|\mathcal{F}_t^W]$ can be computed explicitly as functions of the parameters.
The constant coefficients model: more explicit formulae

Commodities prices S^i follow n-dim Black-Scholes model: volatilities $\sigma^{ij} > 0$ and interest rate $r > 0$ constant so that, in particular, $Q_T = Q$

$F^i_t(T) = e^{r(T-t)}S^i_t$ for all commodities $1 \leq i \leq n$

Demand of electricity: D follows a OU process

$$dD_t = a(b - D_t)dt + \delta dW^0_t, \quad D_0 > 0$$

with $a, b, \delta > 0$.

Under these assumptions probabilities $Q[D_T \in \lambda^i_k(T) | F^0_t]$ and $Q^\pi_T[\pi_T = \pi | F^W_t]$ can be computed explicitly as functions of the parameters.
What’s next?

- Pricing of options on forward electricity: it can be reduced to pricing of basket options of commodities
- Simulations and estimation of parameters in progress...
- Make the model more complex, e.g. add stochastic convenience yields and interest rate, more than one failure at the time...
- Study the risk premium $\pi(t, T) = F_t(T) - P_t$ in our model, compare with other models
What’s next?

- Pricing of options on forward electricity: it can be reduced to pricing of basket options of commodities
- Simulations and estimation of parameters in progress ...
 - Make the model more complex, e.g. add stochastic convenience yields and interest rate, more than one failure at the time ...
- Study the risk premium $\pi(t, T) = F_t(T) - P_t$ in our model, compare with other models
What's next?

- Pricing of options on forward electricity: it can be reduced to pricing of basket options of commodities.
- Simulations and estimation of parameters in progress ...
- Make the model more complex, e.g., add stochastic convenience yields and interest rate, more than one failure at the time ...
- Study the risk premium $\pi(t, T) = F_t(T) - P_t$ in our model, compare with other models.
What’s next?

- Pricing of options on forward electricity: it can be reduced to pricing of basket options of commodities
- Simulations and estimation of parameters in progress ...
- Make the model more complex, e.g. add stochastic convenience yields and interest rate, more than one failure at the time ...
- Study the risk premium $\pi(t, T) = F_t(T) - P_t$ in our model, compare with other models