Estimating extreme quantile regions for two dependent risks

John H.J. Einmahl

Tilburg University

Joint work in progress with

Laurens de Haan (Rotterdam and Lisbon)

ICSA, Piscataway, June 6, 2008
INTRODUCTION

– UNIVARIATE CASE

df F, with quantile function F^{-1}.

Sample size $n = 1000$, say.

Estimate $F^{-1}(0.6)$.

Estimate $F^{-1}(0.999)$. The interval

$$[F^{-1}(0.999), \infty)$$

contains hardly or no data and therefore statistical inference is difficult.
Estimate $F^{-1}(1 - p)$.

In particular when we want to protect ourselves against a calamity that has not yet occurred, we consider the case where p is smaller than $1/n$.

Motivation:

SPC

finance (VaR)

flooding

...
– BIVARIATE CASE

We simultaneously monitor two dependent risks $X, Y > 0$.

Quantile? No natural definition.

Quadrant?
Region bounded by circle?
Triangle?

Which shape?

Let the pair (X, Y) have df F with density f on $(0, \infty)^2$. Denote the corresponding probability measure with P.

We have a random sample of size n from F.
We define quantile regions determined by the levels of f:

$$Q = \{(x, y) \in (0, \infty)^2 : f(x, y) \leq \varepsilon\}.$$

So, for (very small) p find Q of this type such that $PQ = p$.

Consider $Q^c = \{(x, y) \in (0, \infty)^2 : f(x, y) > \varepsilon\}$. This Q^c has the property that on Q^c, f is larger than on Q, i.e. the quantile region Q is the set of less likely points. As a consequence, Q^c is the region with smallest area such that $PQ^c = 1 - p$.
Now let $p = p_n$ be very small. For the asymptotics think of $np_n \to c \in [0, \infty)$, so $c = 0$ is possible.

How to estimate $Q = Q_n$ nonparametrically?

Since we are working on the boundary of the sample or beyond we ‘need’ Statistics of Extremes.
RESULTS

We assume that $F \in D(G)$, with extreme-value indices $\gamma_1, \gamma_2 > 0$, i.e. when $t \to \infty$

\begin{equation}
(1) \quad t(1 - F(U_1(t)x^{\gamma_1}, U_2(t)y^{\gamma_2})) \to \int \int_{u > x \text{ or } v > y} g(u, v) \, du \, dv,
\end{equation}
on $(0, \infty)^2 \setminus \{(\infty, \infty)\}$, with

$$U_j(t) = F_j^{-1}(1 - 1/t)$$

and F_j, $j = 1, 2$, the marginals of F.

Here g is the density corresponding to $-\log G_0$; G_0 is obtained from G after standardization to standard Fréchet marginals.
We also need a density version of (1): when $t \to \infty$

\begin{equation}
(2) \quad tU_1(t)U_2(t)f(U_1(t)x^{\gamma_1}, U_2(t)y^{\gamma_2})
\to \frac{1}{\gamma_1\gamma_2}x^{1-\gamma_1}y^{1-\gamma_2}g(x, y),
\end{equation}
on $(0, \infty)^2$.

We have $g(ax, ay) = a^{-3}g(x, y), a > 0$.

We assume that f is non-increasing in each coordinate, outside $(0, M]^2$ for some $M > 0$ and on $(0, M]^2$, f is bounded away from zero. As a consequence the boundary of Q_n is non-increasing.
Recall

\[Q_n = \{(x, y) \in (0, \infty)^2 : f(x, y) \leq \varepsilon\} \]

with \(\varepsilon \) such that \(PQ_n = p \).

Set

\[S = \{(x, y) : x^{1-\gamma_1}y^{1-\gamma_2}g(x, y) \leq \gamma_1\gamma_2\}, \]

see (2). \(S \) is a fixed (not depending on \(n \)) basis for our estimator of \(Q_n \). We will estimate it later and then transform that estimator, using in particular \(p \).

Throughout let \(k \) be a sequence of positive numbers such that \(k \to \infty \) and \(k/n \to 0 \).
A first step is to replace ε by

$$\tilde{\varepsilon} = \left(\frac{np}{k\nu(S')} \right)^{\gamma_1 + \gamma_2 + 1} \frac{1}{(n/k)U_1(n/k)U_2(n/k)},$$

where ν is the so-called exponent measure, the measure corresponding to $-\log G_0$.

Let $z = (x, y)$ and define, in vector notation, the map T_n by

$$T_n(z) = U(n/k)z^\gamma.$$

Write

$$\tilde{Q}_n = T_n \left(\frac{k\nu(S)}{np} S \right) = U \left(\frac{n}{k} \right) \left(\frac{k\nu(S)}{np} \right)^\gamma S^\gamma.$$
\(\tilde{Q}_n \) is obtained from

\[
\{(x, y) \in (0, \infty)^2 : f(x, y) \leq \tilde{\varepsilon}\}
\]

by using the limiting relation between \(f \) and \(g \), i.e. the domain of attraction condition for densities (2).

\(\tilde{Q}_n \) is a good approximation to \(Q_n \): we have

\[
\frac{P(Q_n \triangle \tilde{Q}_n)}{p} \to 0.
\]

Here \(\triangle \) denotes ‘symmetric difference’: \(A \triangle B = A \setminus B \cup B \setminus A \).
The obvious step to obtain an estimator of Q_n is now to estimate \tilde{Q}_n, which can be done by estimating $T_n, \nu(S)$ and in particular S.

We write S in polar coordinates:

$$\begin{cases}
(r, \theta) : r \geq \left(\frac{1}{\gamma_1 \gamma_2} \psi(\theta) \cos^{1-\gamma_1} \theta \sin^{1-\gamma_2} \theta \right)^{\frac{1}{\gamma_1+\gamma_2+1}}
\end{cases},$$

where

$$\psi(\theta) = g(\cos \theta, \sin \theta).$$

The function ψ is the density of Ψ, the so-called spectral measure. Just like the exponent measure, Ψ describes the dependence structure of the limit distribution G.
In order to estimate these quantities, we have to estimate $U_1(n/k), U_2(n/k), \gamma_1, \gamma_2$ and the spectral density ψ.

Estimation of the first four is well-known. We estimate the two extreme-value indices with the moment estimator.

The estimator for ψ will be obtained by smoothing the empirical likelihood estimator of the spectral measure Ψ in Einmahl and Segers (2008). Hence we obtain \hat{Q}_n.
Indeed, since all these estimators have good asymptotic properties, \hat{Q}_n is close to \tilde{Q}_n and hence to Q_n:

THEOREM. Under appropriate conditions we have that

$$P(\hat{Q}_n \triangle Q_n) \xrightarrow{p} 0.$$

This is a consistency result. It is presented in a ratio setting, since $p = p_n \to 0$.

In practice it is important that the k’s for estimating γ_1, γ_2 and ψ can be different. The theorem holds true in this case.
SIMULATIONS
(Thanks to Andrea Krajina)

Bivariate Cauchy distribution on first quadrant.

Very heavy tailed distribution.

Density

\[f(x, y) = \frac{2}{\pi(1 + x^2 + y^2)^{3/2}}, \quad x, y > 0. \]

Two samples of size \(n = 2000 \).

We take \(p = 1/1000, 1/2000, 1/5000 \). Note that for the latter \(p \) we have \(np = 0.4 \).
first sample of size 2000

\(p = 1/1000, 1/2000, 1/5000 \)

\(\cdots \cdots \) true \quad -- \quad \hline \text{estimator}
on log scale for different viewing
second sample of size 2000

\(p = 1/1000, 1/2000, 1/5000 \)

\[\cdots \cdots \text{true} \quad \text{----- estimator} \]