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Given a stochastic differential equation

dX (s) = b(s,X (s), π(s))ds+σ(s,X (s), π(s))dW (s), t ≤ s ≤ T

whose solution is X (s) = X t,x
s with initial data X (t) = x .

Consider the stochastic control problem

V (t , x) = sup
π∈A

E

{∫ T

t
L(s,X t,x

s , π(s))ds + ψ(X t,x
T )

}
.

V (t , x) is the classical or viscosity solution to the
Hamilton-Jacobi-Bellman (HJB) PDE:
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∂V
∂t + H(t , x ,DxV ,D2

x V ) = 0, (t , x) ∈ [0,T ) × R
n,

V (T , x) = ψ(x), x ∈ R
n,

where

H(t , x ,p,A) = sup
u∈Π

[
b · p +

1
2

Tr(AσσT ) + L
]
.

Numerical approximation of V :




V h(t , x) − V h(t − h, x)
h + H̄h = 0, (t , x) ∈ [0,T ) × O,

V h(t , x) = Ψ(t , x), (t , x) ∈ ([0,T ) × ∂O)
⋃

({T} × O).
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Questions

What is a suitable Ψ(t , x)? Sure we can take
Ψ(T , x) = ψ(x), but how about Ψ on ([0,T ) × ∂O)?

Given Ψ(t , x), especially Ψ(t , x) = ψ(x), what is the error
between V and V h?
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V h corresponds to the HJB equation




∂Ṽ
∂t + H(t , x ,Dx Ṽ ,D2

x Ṽ ) = 0, (t , x) ∈ [0,T ) × O,

Ṽ (t , x) = Ψ(t , x), (t , x) ∈ ([0,T ) × ∂O)
⋃

({T} × O),

and then in some sense (classical or viscosity solution) is
related to

Ṽ (t , x) = sup
π∈A

E

{∫ τ∧T

t
L(s,X t,x

s , π(s))ds + Ψ(τ ∧ T ,X t,x
τ∧T )

}
,

where τ = inf{s : s ≥ t ,X t,x
s /∈ O} is the exit time of X t,x

s from O.
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V − V h
=?

V :
∂V
∂t

+H = 0, R
n

V h :
∆V h

h
+H̄h = 0, O

V = sup E

{∫ T

t
+ψ

}

Ṽ = sup E

{∫ τ∧T

t
+Ψ

}

Ṽ :
∂Ṽ
∂t

+H = 0, O
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V − V h
=?

V :
∂V
∂t

+H = 0, R
n

V h :
∆V h

h
+H̄h = 0, O

V = sup E

{∫ T

t
+ψ

}

Ṽ = sup E

{∫ τ∧T

t
+Ψ

}

Ṽ :
∂Ṽ
∂t

+H = 0, O

Instead of V − V h, we consider V − Ṽ = sup E(·) − sup E(·).
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Theorem

|V (t , x)−Ṽ (t , x)| ≤ sup
0≤s≤T , y∈∂O

|V (s, y)−Ṽ (s, y)| sup
π∈A

P(τ ≤ T ).

Proof.
Use the dynamic programming principle:

V (t , x) = sup
π∈A

E

{∫ θ∧T

t
L(s,X t,x

s , π(s))ds + V (θ ∧ T ,X t,x
θ∧T )

}
,

where θ ≥ t is a stopping time.
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A financial market model

“Bond”: one riskless asset

dB(s)

B(s)
= r(s)ds, t ≤ s ≤ T .

“Stocks”: n risky assets

dPi(s)

Pi(s)
= µi(s) +

n∑

j=1

σij(s)dWj(s), t ≤ s ≤ T .
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A financial market model

“Bond”: one riskless asset

“Stocks”: n risky assets

Wealth process

dX (s) = (X (s) −
n∑

i=1

πi(s)X (s))
dB(s)

B(s)
+

n∑

i=1

πi(s)X (s)
dPi(s)

Pi(s)
,

where πi(s) is the proportion of wealth invested in the i th stock.
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In a complete market

Theorem

|V (t , x) − Ṽ (t , x)| ≤ sup
0≤s≤T

|V (s, β) − Ṽ (s, β)|F (β)

for t ∈ [0,T ], x ∈ (0, β). Especially, when r, µi and σij are
constants, for t ∈ [0,T ], x ∈ (0, βe−r(T−t)),

F (β) = Φ

(
Φ−1

(
x
β

er(T−t)
)

+ |θ|
√

T − t
)
,

where θ is a known constant and Φ(·) is the cumulative normal
distribution function.
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Lemma

Given O = (0, β).

sup
π∈A

P(τ ≤ T ) = sup
π∈A

P(X t,x
T ≥ β).

Proof.

1 Since X t,x
s is positive, τ = inf{s : s ≥ t ,X t,x

s ≥ β}.
2 supπ P(τ ≤ T ) ≥ supπ P(X t,x

T ≥ β). Trivial.
3 Imagine an investment strategy: invest all the money in the

riskless asset once the wealth attains β. Then the terminal
wealth will be greater than β.

4 Difficulty: to prove this strategy is progressively
measurable.
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Calculate supπ∈A P(X t,x
T ≥ β)

“To maximize the probability that the portfolio reaches a given
target”, this problem has been studied by several researchers.
See Spivak and Cvitanić [1], Browne [2].
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Error estimates in high-dimensional space

Given a R
n-valued state process X (s) evolving as follows

dX (s) = b(s,X (s), π(s))ds+σ(s,X (s), π(s))dW (s), t ≤ s ≤ T .

Denote this process by X t,x
s if X (t) = x . And assume

|b(t , x ,u) − b(t , y ,u)| + ‖σ(t , x ,u) − σ(t , y ,u)‖ ≤ K |x − y |,

|b(t , x ,u)| + ‖σ(t , x ,u)‖ ≤ K (1 + |x |),
for some constant K > 1.
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Error estimates in high-dimensional space

Theorem

Given O = {x |x ∈ R
n, |x | < R} for R > 0. τ be the exit time of

X t,x
s from O. Assume

ln(1 + R2) − ln(1 + |x |2) − 9K 2(T − t) > 0.

We have

P(τ ≤ T ) ≤ 2e− 9
2 K 2(T−t)

(
1 + |x |2
1 + R2

) 1
18K2(T−t)

ln 1+R2

1+|x|2
−1

.
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Error estimates in high-dimensional space

Proof.
1 Recall the exponential inequality for local martingales:

Let {Mt , t ∈ [0,T ]} be a continuous local martingale. For
any δ < 0 and ρ > 0

P

{
〈M〉T < ρ, sup

0≤t≤T
|Mt | ≥ δ

}
≤ 2 exp

(
− δ2

2ρ

)
.

2 Z (s) = ln(1 + |X t,x
s |2) = As + Ms, where Ms is a local

martingale with a bounded quadratic variation and As is
also bounded.

3 τ ≤ T ⇔ supt≤s≤T |Z (s)| ≥ ln(1 + R2).
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Questions

What is a suitable Ψ(t , x)? Sure we can take
Ψ(T , x) = ψ(x), but how about Ψ on ([0,T ) × ∂O)?

X Given Ψ(t , x), what is the error between V and V h?
Partially answered.
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Outline

We are developing a numerical procedure to approximate the
boundary conditions.

This procedure is based on the Robbins-Monro algorithm.
Rate of convergence (in progress).

Rate of convergence in the Martingale CLT (in progress).
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