Localization error estimates for HJB equations

HUANG Junbo

INRIA Sophia Antipolis-Méditerranée

Journées MAS, 2008

Given a stochastic differential equation

$$dX(s) = b(s, X(s), \pi(s))ds + \sigma(s, X(s), \pi(s))dW(s), \quad t \le s \le T$$

whose solution is $X(s) = X_s^{t,x}$ with initial data X(t) = x. Consider the stochastic control problem

$$V(t,x) = \sup_{\pi \in \mathcal{A}} \mathbb{E} \left\{ \int_t^T L(s, X_s^{t,x}, \pi(s)) ds + \psi(X_T^{t,x}) \right\}.$$

V(t,x) is the classical or viscosity solution to the *Hamilton-Jacobi-Bellman* (HJB) PDE:

$$\begin{cases} \frac{\partial V}{\partial t} + \mathcal{H}(t, x, D_x V, D_x^2 V) = 0, & (t, x) \in [0, T) \times \mathbb{R}^n, \\ \\ V(T, x) = \psi(x), & x \in \mathbb{R}^n, \end{cases}$$

where

$$\mathcal{H}(t, x, p, A) = \sup_{u \in \Pi} \left[b \cdot p + \frac{1}{2} Tr(A \sigma \sigma^{T}) + L \right].$$

Numerical approximation of *V*:

$$\begin{cases} \frac{V^h(t,x)-V^h(t-h,x)}{h}+\bar{\mathcal{H}}^h=0, & (t,x)\in[0,T)\times O, \\ \\ V^h(t,x)=\Psi(t,x), & (t,x)\in([0,T)\times\partial O)\cup(\{T\}\times\overline{O}). \end{cases}$$

Questions

- What is a suitable $\Psi(t, x)$? Sure we can take $\Psi(T, x) = \psi(x)$, but how about Ψ on $([0, T) \times \partial O)$?
- Given $\Psi(t, x)$, especially $\Psi(t, x) = \psi(x)$, what is the error between V and V^h ?

V^h corresponds to the HJB equation

$$\begin{cases} \frac{\partial \widetilde{V}}{\partial t} + \mathcal{H}(t, x, D_x \widetilde{V}, D_x^2 \widetilde{V}) = 0, & (t, x) \in [0, T) \times O, \\ \\ \widetilde{V}(t, x) = \Psi(t, x), & (t, x) \in ([0, T) \times \partial O) \bigcup (\{T\} \times \overline{O}), \end{cases}$$

and then in some sense (classical or viscosity solution) is related to

$$\widetilde{V}(t,x) = \sup_{\pi \in \mathcal{A}} \mathbb{E} \left\{ \int_{t}^{\tau \wedge T} L(s, X_{s}^{t,x}, \pi(s)) ds + \Psi(\tau \wedge T, X_{\tau \wedge T}^{t,x}) \right\},$$

where $\tau = \inf\{s : s \ge t, X_s^{t,x} \notin O\}$ is the exit time of $X_s^{t,x}$ from O.

$$V - V^h = ?$$

$$V: \frac{\partial V}{\partial t} + \mathcal{H} = 0, \mathbb{R}^{n}$$

$$V = \sup \mathbb{E} \left\{ \int_{t}^{T} + \psi \right\}$$

$$V^{h}: \frac{\Delta V^{h}}{h} + \bar{\mathcal{H}}^{h} = 0, O$$

$$\widetilde{V} = \sup \mathbb{E} \left\{ \int_{t}^{T \wedge T} + \psi \right\}$$

$$\widetilde{V}: \frac{\partial \widetilde{V}}{\partial t} + \mathcal{H} = 0, O$$

$$V - V^{h} = ?$$

$$V: \frac{\partial V}{\partial t} + \mathcal{H} = 0, \mathbb{R}^n \longrightarrow V = \sup \mathbb{E} \left\{ \int_t^T + \psi \right\}$$

$$\begin{split} V^h : \frac{\Delta V^h}{h} + \bar{\mathcal{H}}^h &= 0, \ O \\ &\widetilde{V} = \sup \mathbb{E} \left\{ \int_t^{\tau \wedge T} + \Psi \right\} \\ &\widetilde{V} : \frac{\partial \widetilde{V}}{\partial t} + \mathcal{H} = 0, \ O \end{split}$$

$$V - V^{h} = ?$$

$$V: rac{\partial V}{\partial t} + \mathcal{H} = 0, \ \mathbb{R}^n$$

$$V = \sup \mathbb{E} \left\{ \int_t^T + \psi \right\}$$

$$V^h: rac{\Delta V^h}{h} + \bar{\mathcal{H}}^h = 0, \ O$$

$$\widetilde{V} = \sup \mathbb{E} \left\{ \int_t^{\tau \wedge T} + \psi \right\}$$

$$\widetilde{V}: \frac{\partial \widetilde{V}}{\partial t} + \mathcal{H} = 0, O$$

Instead of $V - V^h$, we consider $V - \widetilde{V} = \sup \mathbb{E}(\cdot) - \sup \mathbb{E}(\cdot)$.



Theorem

$$|\mathit{V}(\mathit{t},\mathit{x}) - \widetilde{\mathit{V}}(\mathit{t},\mathit{x})| \leq \sup_{0 \leq \mathit{s} \leq \mathit{T}, \, \mathit{y} \in \partial \mathit{O}} |\mathit{V}(\mathit{s},\mathit{y}) - \widetilde{\mathit{V}}(\mathit{s},\mathit{y})| \sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq \mathit{T}).$$

Proof.

Use the dynamic programming principle:

$$V(t,x) = \sup_{\pi \in \mathcal{A}} \mathbb{E} \left\{ \int_{t}^{\theta \wedge T} L(s, X_{s}^{t,x}, \pi(s)) ds + V(\theta \wedge T, X_{\theta \wedge T}^{t,x}) \right\},$$

where $\theta > t$ is a stopping time

Theorem

$$|\mathit{V}(\mathit{t}, \mathit{x}) - \widetilde{\mathit{V}}(\mathit{t}, \mathit{x})| \leq \sup_{0 \leq \mathit{s} \leq \mathit{T}, \, \mathit{y} \in \partial \mathit{O}} |\mathit{V}(\mathit{s}, \mathit{y}) - \widetilde{\mathit{V}}(\mathit{s}, \mathit{y})| \sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq \mathit{T}).$$

Proof.

Use the dynamic programming principle:

$$V(t,x) = \sup_{\pi \in \mathcal{A}} \mathbb{E} \left\{ \int_t^{\theta \wedge T} L(s, X_s^{t,x}, \pi(s)) ds + V(\theta \wedge T, X_{\theta \wedge T}^{t,x}) \right\},$$

where $\theta > t$ is a stopping time.

A financial market model

"Bond": one riskless asset

$$\frac{dB(s)}{B(s)} = r(s)ds, \quad t \le s \le T.$$

"Stocks": n risky assets

$$\frac{dP_i(s)}{P_i(s)} = \mu_i(s) + \sum_{i=1}^n \sigma_{ij}(s) dW_j(s), \quad t \leq s \leq T.$$

A financial market model

"Bond": one riskless asset

"Stocks": n risky assets

Wealth process

$$dX(s) = (X(s) - \sum_{i=1}^{n} \pi_i(s)X(s))\frac{dB(s)}{B(s)} + \sum_{i=1}^{n} \pi_i(s)X(s)\frac{dP_i(s)}{P_i(s)},$$

where $\pi_i(s)$ is the proportion of wealth invested in the i^{th} stock.

In a complete market

Theorem

$$|V(t,x)-\widetilde{V}(t,x)| \leq \sup_{0\leq s\leq T} |V(s,\beta)-\widetilde{V}(s,\beta)|F(\beta)$$

for $t \in [0, T]$, $x \in (0, \beta)$. Especially, when r, μ_i and σ_{ij} are constants, for $t \in [0, T]$, $x \in (0, \beta e^{-r(T-t)})$,

$$F(\beta) = \Phi\left(\Phi^{-1}\left(\frac{\mathbf{x}}{\beta}\mathbf{e}^{r(T-t)}\right) + |\theta|\sqrt{T-t}\right),$$

where θ is a known constant and $\Phi(\cdot)$ is the cumulative normal distribution function.

Given
$$O = (0, \beta)$$
.

$$\sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq T) = \sup_{\pi \in \mathcal{A}} \mathbb{P}(X_T^{t,x} \geq \beta).$$

- ① Since $X_s^{t,x}$ is positive, $\tau = \inf\{s : s \ge t, X_s^{t,x} \ge \beta\}$.
- ② $\sup_{\pi} \mathbb{P}(\tau \leq T) \geq \sup_{\pi} \mathbb{P}(X_T^{t,x} \geq \beta)$. Trivial.
- 3 Imagine an investment strategy: invest all the money in the riskless asset once the wealth attains β . Then the terminal wealth will be greater than β .
- Difficulty: to prove this strategy is progressively measurable

Given
$$O = (0, \beta)$$
.

$$\sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq T) = \sup_{\pi \in \mathcal{A}} \mathbb{P}(X_T^{t,x} \geq \beta).$$

- **①** Since $X_s^{t,x}$ is positive, $\tau = \inf\{s : s \ge t, X_s^{t,x} \ge \beta\}$.
- ② $\sup_{\pi} \mathbb{P}(\tau \leq T) \geq \sup_{\pi} \mathbb{P}(X_{\tau}^{t,x} \geq \beta)$. Trivial.
- 3 Imagine an investment strategy: invest all the money in the riskless asset once the wealth attains β . Then the terminal wealth will be greater than β .
- Difficulty: to prove this strategy is progressively measurable.

Given
$$O = (0, \beta)$$
.

$$\sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq T) = \sup_{\pi \in \mathcal{A}} \mathbb{P}(X_T^{t,x} \geq \beta).$$

- **①** Since $X_s^{t,x}$ is positive, $\tau = \inf\{s : s \ge t, X_s^{t,x} \ge \beta\}$.
- \bigcirc $\sup_{\pi} \mathbb{P}(\tau \leq T) \geq \sup_{\pi} \mathbb{P}(X_{T}^{t,x} \geq \beta)$. Trivial.
- 3 Imagine an investment strategy: invest all the money in the riskless asset once the wealth attains β . Then the terminal wealth will be greater than β .
- Difficulty: to prove this strategy is progressively measurable

Given
$$O = (0, \beta)$$
.

$$\sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq T) = \sup_{\pi \in \mathcal{A}} \mathbb{P}(X_T^{t,x} \geq \beta).$$

- **③** Since $X_s^{t,x}$ is positive, $\tau = \inf\{s : s \ge t, X_s^{t,x} \ge \beta\}$.
- ② $\sup_{\pi} \mathbb{P}(\tau \leq T) \geq \sup_{\pi} \mathbb{P}(X_T^{t,x} \geq \beta)$. Trivial.
- 3 Imagine an investment strategy: invest all the money in the riskless asset once the wealth attains β . Then the terminal wealth will be greater than β .
- Difficulty: to prove this strategy is progressively measurable.

Given
$$O = (0, \beta)$$
.

$$\sup_{\pi \in \mathcal{A}} \mathbb{P}(\tau \leq T) = \sup_{\pi \in \mathcal{A}} \mathbb{P}(X_T^{t,x} \geq \beta).$$

- **①** Since $X_s^{t,x}$ is positive, $\tau = \inf\{s : s \ge t, X_s^{t,x} \ge \beta\}$.
- ② $\sup_{\pi} \mathbb{P}(\tau \leq T) \geq \sup_{\pi} \mathbb{P}(X_T^{t,x} \geq \beta)$. Trivial.
- **3** Imagine an investment strategy: invest all the money in the riskless asset once the wealth attains β . Then the terminal wealth will be greater than β .
- Difficulty: to prove this strategy is progressively measurable.

Calculate $\sup_{\pi \in \mathcal{A}} \mathbb{P}(X_T^{t,x} \geq \beta)$

"To maximize the probability that the portfolio reaches a given target", this problem has been studied by several researchers. See Spivak and Cvitanić [1], Browne [2].

Given a \mathbb{R}^n -valued state process X(s) evolving as follows

$$dX(s) = b(s, X(s), \pi(s))ds + \sigma(s, X(s), \pi(s))dW(s), \quad t \le s \le T.$$

Denote this process by $X_s^{t,x}$ if X(t) = x. And assume

$$|b(t, x, u) - b(t, y, u)| + ||\sigma(t, x, u) - \sigma(t, y, u)|| \le K|x - y|,$$

 $|b(t, x, u)| + ||\sigma(t, x, u)|| \le K(1 + |x|),$

for some constant K > 1.

Theorem

Given $O = \{x | x \in \mathbb{R}^n, |x| < R\}$ for R > 0. τ be the exit time of $X_s^{t,x}$ from O. Assume

$$\ln(1+R^2) - \ln(1+|x|^2) - 9K^2(T-t) > 0.$$

We have

$$\mathbb{P}(\tau \leq T) \leq 2e^{-\frac{9}{2}K^2(T-t)} \left(\frac{1+|x|^2}{1+R^2}\right)^{\frac{1}{18K^2(T-t)}\ln\frac{1+R^2}{1+|x|^2}-1}.$$

Proof.

● Recall the exponential inequality for local martingales: Let $\{M_t, t \in [0, T]\}$ be a continuous local martingale. For any $\delta < 0$ and $\rho > 0$

$$\mathbb{P}\Big\{\langle \textit{M}\rangle_{\textit{T}}<\rho, \sup_{0\leq t\leq \textit{T}}|\textit{M}_t|\geq \delta\Big\}\leq 2\exp\Big(-\frac{\delta^2}{2\rho}\Big).$$

- $Z(s) = \ln(1 + |X_s^{t,x}|^2) = A_s + M_s$, where M_s is a local martingale with a bounded quadratic variation and A_s is also bounded.

Proof.

● Recall the exponential inequality for local martingales: Let $\{M_t, t \in [0, T]\}$ be a continuous local martingale. For any $\delta < 0$ and $\rho > 0$

$$\mathbb{P}\Big\{\langle \textit{M}\rangle_{\textit{T}} < \rho, \sup_{0 \leq t \leq \textit{T}} |\textit{M}_t| \geq \delta\Big\} \leq 2 \exp\Big(-\frac{\delta^2}{2\rho}\Big).$$

- $Z(s) = \ln(1 + |X_s^{t,x}|^2) = A_s + M_s$, where M_s is a local martingale with a bounded quadratic variation and A_s is also bounded.

Proof.

● Recall the exponential inequality for local martingales: Let $\{M_t, t \in [0, T]\}$ be a continuous local martingale. For any $\delta < 0$ and $\rho > 0$

$$\mathbb{P}\Big\{\langle \textit{M}\rangle_{\textit{T}} < \rho, \sup_{0 \leq t \leq \textit{T}} |\textit{M}_t| \geq \delta\Big\} \leq 2 \exp\Big(-\frac{\delta^2}{2\rho}\Big).$$

- $Z(s) = \ln(1 + |X_s^{t,x}|^2) = A_s + M_s$, where M_s is a local martingale with a bounded quadratic variation and A_s is also bounded.

Questions

- What is a suitable $\Psi(t, x)$? Sure we can take $\Psi(T, x) = \psi(x)$, but how about Ψ on $([0, T) \times \partial O)$?
- ✓ Given $\Psi(t,x)$, what is the error between V and V^h ? Partially answered.

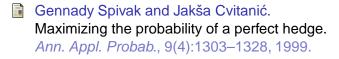
Questions

- What is a suitable $\Psi(t, x)$? Sure we can take $\Psi(T, x) = \psi(x)$, but how about Ψ on $([0, T) \times \partial O)$?
- \checkmark Given $\Psi(t, x)$, what is the error between V and V^h ? Partially answered.

Outline

We are developing a numerical procedure to approximate the boundary conditions.

- This procedure is based on the Robbins-Monro algorithm.
 Rate of convergence (in progress).
- Rate of convergence in the Martingale CLT (in progress).



Sid Browne.

Reaching goals by a deadline: digital options and continuous-time active portfolio management.

Adv. in Appl. Probab., 31(2):551–577, 1999.