State Space Models for Wind Forecast Correction

Valérie Monbet1 Pierre Ailliot2 Anne Cuzol1

1Université de Bretagne Sud
2Université de Brest

MAS - 2008/28/08
1 Motivations

2 State Space Models
 - Linear Model: an adaptive bias correction
 - Non Linear Model: bias and location correction

3 Numerical results

4 Concluding remarks
Outline

1. Motivations

2. State Space Models
 - Linear Model: an adaptive bias correction
 - Non Linear Model: bias and location correction

3. Numerical results

4. Concluding remarks
Motivations

- Accuracy of wind forecast
 - Wind Energy Management
 - Security and Rescue
- Forecast errors: intensity and position

Satellite

Forecast (same date)
Motivations

Forecast and observations

2008/05/25 - 00:00

2008/05/25 - 12:00
Weather forecast correction (state of art)

- Local Numerical Weather models
- Purely stochastic
 \[Y_t = f(Y_{t-1}, \ldots, Y_{t-k}; \theta) + \sigma \epsilon_t \]

- Combined models
 - Regression [Lange et al. (2006), von Bremen et al. (2007)]
 \[Y_{t}^{\text{obs}} = f(Y_{t}^{\text{for}}, Z_{t}^{\text{for}}; \theta) + \sigma \epsilon_t \]
 or
 \[Y_{t}^{\text{obs}} = f(Y_{t}^{\text{for}}, Y_{t-1}^{\text{obs}}, \ldots, Y_{t-k}^{\text{obs}}; \theta) + \sigma \epsilon_t \]
 - Data Assimilation [Dee and da Silva (1998), Galanis et al. (2002)] based on state space models
1. Motivations

2. State Space Models
 - Linear Model: an adaptive bias correction
 - Non Linear Model: bias and location correction

3. Numerical results

4. Concluding remarks
First step: single location

- Position error ↔ phase error

<table>
<thead>
<tr>
<th>Date</th>
<th>Observation</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed: -, Forecast: -+
Linear Gaussian state-space model

\[dB_t = \alpha (B_t - \mu) dt + \sigma dW_t \]

\[y_{true}^t = y_{for}^t + B_t \]

\[y_{obs}^t = y_{true}^t + \sigma_{obs} \epsilon_t \]

- \(W_t \): standard brownian motion, \(\epsilon_t \) Gaussian white noise
- \(Y_t \): observed at time \(t_1, \cdots, t_K \)

Inference
- Kalman filter: weighted mean between the predicted state and the observation
Need another model

- Location or phase error

2008/5/24–5h55

Monbet

MAS2008
Introduction of a phase correction

Model

\[
\begin{align*}
 d\Delta_t &= \alpha_\Delta (\Delta_t - \mu_\Delta) dt + \sigma_\Delta dV_t \\
 dB_t &= \alpha_B (B_t - \mu_B) dt + \sigma_B dW_t \\
 \gamma_t^{\text{true}} &= \gamma_{t+\Delta_t}^{\text{for}} + B_t \\
 \gamma_t^{\text{obs}} &= \gamma_t^{\text{true}} + \sigma_W \epsilon(t)
\end{align*}
\]

Phase error (hidden)
Intensity error (hidden)
"True" Y_t (hidden)
Observed Y_t

- V_t, W_t: standard brownian motions, ϵ_t Gaussian white noise
- Y_t: observed at time t_1, \ldots, t_K

Inference

- Parameter estimation: EM algorithm (need smoothing) or maximum likelihood by a gradient algorithm [Robbins and Monroe, 1951]
 \[
 \theta_k = \theta_{k-1} + \gamma_k \partial_\theta \mathcal{L}_T(\theta)
 \]
- Monte Carlo approximation of $\mathcal{L}_T(\theta)$ and $\partial_\theta \mathcal{L}_T(\theta)$ based on particular filtering [Coquelin et al., 2007]
- Breaks in the data due to the assimilations of the observations in the numerical weather model
Outline

1. Motivations

2. State Space Models
 - Linear Model: an adaptive bias correction
 - Non Linear Model: bias and location correction

3. Numerical results

4. Concluding remarks
Example of correction for Brest
Comparison

- Root Mean Square Errors

![Graph showing Root Mean Square Errors over time](image)
Outline

1 Motivations

2 State Space Models
 - Linear Model: an adaptive bias correction
 - Non Linear Model: bias and location correction

3 Numerical results

4 Concluding remarks
Concluding remarks

- Correction of weather forecast by bias and phase correction with dynamic
- Phase correction does not improve the bias correction rmse
 - Mean error
 - Local phenomena

- Perspectives:
 - Spatial model
 - Local weather