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Outline of the talk:

• The multi-armed bandit problem

• A hierarchical of bandits
• Application to tree search
• Application to optimization
• Application to planning
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Exploration vs Exploitation in decision making

In an uncertain world, maybe partially observable, maybe
adversarial, how should we make decisions?

• Exploit: act optimally according to our current beliefs

• Explore: learn more about the environment

Tradeoff between exploration and exploitation.
Appears in optimization/learning problems, such as in
reinforcement learning.
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Introduction to multi-armed bandits

General setting:

• At each round, several options (actions)
are available to choose from.

• A reward is provided according to the
choice made.

• Our goal is to optimize the sum of
rewards.

Many potential applications:

• Clinical trials

• Advertising: what ad to put on a web-page?

• Labor markets: which job a worker should choose?

• Optimization of noisy function

• Numerical resource allocation
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Example: a two-armed bandit

Say, there are 2 arms:

We have pulled the arms so far:

Time 1 2 3 4 5 6 7 8 ...

Arm pulled 1 2 1 1 2 1 1 1

Reward arm 1 10 9 11 12 8 10

Reward arm 2 0 14

Which arm should we pull next?

• What are the assumption about the rewards?

• What is really our goal?
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The stochastic bandit problem

Setting:

• Set of K arms, defined by random variables Xk ∈ [0, 1], whose
law is unknown,

• At each time t, choose an arm kt and receive reward

xt
i .i .d.∼ Xkt

.

Goal: find an arm selection policy such as to maximize the
expected sum of rewards.

Definitions :

• Let µk = E[Xk ] be the expected value of arm k.

• Let µ∗ = maxk µk the optimal value, and k∗ an optimal arm.
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Exploration-exploitation tradeoff
Define the cumulative regret:

Rn
def
=

n∑

t=1

µ∗ − µkt
.

Property: Write ∆k
def
= µ∗ − µk , then

Rn =
K∑

k=1

nk∆k ,

with nk the number of times arm k has been pulled up to time n.
(regret results from pulling sub-optimal arms because of lack of
information about an optimal one)
Goal: Find an arm selection policy such as to minimize Rn.

• Should we explore or exploit?

• Asymptotically consistent? (per-round regret Rn/n → 0, i.e.
1
n

∑
t µkt

→ µ∗).
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Proposed solutions to the bandit problem?

This is an old problem! [Robbins, 1952]
(maybe surprisingly) not fully solved yet!
Many proposed solutions. Examples:

• ǫ-greedy exploration: choose apparent best action with
proba 1 − ǫ, or random action with proba ǫ,

• Bayesian exploration: assign prior to the arm distributions
and based on the rewards, choose the arm with best posterior
mean, or with highest probability of being the best

• Optimistic exploration: choose an arm that has a possibility
of being the best

• Boltzmann exploration: choose arm k with proba
∝ exp( 1

T
X̂k)

• etc.
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The UCB algorithm

Upper Confidence Bounds algorithm [Auer et al. 2002]: at each
time n, select an arm

arg max
k

Bk,nk ,n,

with

Bk,nk ,n
def
=

1

nk

nk∑

s=1

xk,s

︸ ︷︷ ︸
bXk,nk

+

√
2 log(n)

nk︸ ︷︷ ︸
cnk ,n

,

where

• nk is the number of times arm k has been pulled up to time n

• xk,s is the s-th reward obtained when pulling arm k.

Note that

• Sum of an exploitation term and an exploration term.

• cnk ,n is a confidence interval term, so Bk,nk ,n is a UCB.
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Intuition behind the UCB algorithm

Idea:

• Select an arm that has a high probability of being the best,
given what has been observed so far.

• ”Optimism under the face of uncertainty” strategy

Why?

• The B-values Bk,nk ,n are Upper-Confidence-Bounds on µk :
Indeed, from Chernoff-Hoeffding inequality,

P(X̂k,t +

√
2 log(n)

t
≤ µk) ≤ e−2n 2 log(n)

t ≤ n−4.
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Regret bound for UCB

Proposition

Each sub-optimal arm k is visited in average, at most:

Enk(n) ≤ 8
log n

∆2
k

+ cst

times (where ∆k
def
= µ∗ − µk > 0).

Thus the expected regret is bounded by:

ERn =
∑

k

E[nk ]∆k ≤ 8
∑

k:∆k >0

log n

∆k

+ cst.

This is optimal (up to sub-log terms) since ERn = Ω(log n) [Lai
and Robbins, 1985].
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Intuition of the proof

Let k be a sub-optimal arm, and k∗ be an optimal arm. At time n,
if arm k is selected, this means that

Bk,nk ,n ≥ Bk∗,nk∗ ,n

X̂k,nk
+

√
2 log(n)

nk

≥ X̂k∗,nk∗
+

√
2 log(n)

nk∗

µk + 2

√
2 log(n)

nk

≥ µ∗, with high proba

nk ≤ 8 log(n)

∆2
k

Thus with high probability, if nk > 8 log(n)
∆2

k

, then arm k will not be

selected. Thus nk ≤ 8 log(n)
∆2

k

+ 1 with high proba.
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Sketch of proof
Write u = 8 log(n)

∆2
k

+ 1. We have:

nk(n) − u ≤
n∑

t=u+1

1kt=k;nk (t)>u ≤
n∑

t=u+1

1∃s:u<s≤t,∃s∗:1≤s∗≤t, s.t. Bk,s,t≥Bk∗,s∗,t

≤
n∑

t=u+1

[
1∃s:u<s≤t s.t. Bk,s,t>µ∗ + 1∃s∗:1≤s∗≤t s.t. Bk∗,s∗,t≤µ∗

]

≤
n∑

t=u+1

[ t∑

s=u+1

1Bk,s,t>µ∗ +

t∑

s=1

1Bk∗,s,t≤µ∗

]

Now, taking the expectation of both sides,

E[nk(n)] − u ≤
n∑

t=u+1

[ t∑

s=u+1

P
(
Bk,s,t > µ∗

)
+

t∑

s=1

P
(
Bk∗,s,t ≤ µ∗

)]

≤
n∑

t=u+1

[ t∑

s=u+1

t−4 +

t∑

s=1

t−4
]
≤ π2

3
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PAC-UCB

Let β > 0, by slightly changing the confidence interval term, i.e.

Bk,t
def
= X̂k,t +

√
log(Kt2β−1)

t
,

then

P

(∣∣X̂k,t−µk

∣∣ ≤
√

log(Kt2β−1)

t
,∀k ∈ {1, . . . ,K},∀t ≥ 1

)
≥ 1−β.

PAC-UCB [Audibert et al. 2007]: with probability 1 − β, the
regret is bounded by a constant independent of n:

Rn ≤ 6 log(Kβ−1)
∑

k:∆k>0

1

∆k

.
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Hierarchy of bandits

• Bandit (or regret minimization) algorithms = methods for
rapidly selecting the best action.

• Hierarchy of bandits: the reward obtained when pulling an
arm is itself the return of another bandit in a hierarchy.
Applications to

• tree search,
• optimization,
• planning
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The tree search problem

• To each leaf j ∈ L of a
tree is assigned a random
variable Xj ⊂ [0, 1]
whose law is unknown.

• At each time t, a leaf
It ∈ L is selected and a

reward xt
iid∼ XIt is

received. j

jj = E[    ]
* max j

j L

max
L(i)

iµ  =           µj
iNode   :

X

Xµ
µ  =           µ

j

jLeaf   :
Random variable:

Value of leaf j:

*
Optimal leaf

Optimal path

Goal: find an exploration policy that maximizes the expected sum
of obtained rewards.
Idea: use bandit algorithms for efficient tree exploration
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UCB-based leaf selection policy

Leaf selection policy:

To each node i is assigned
a value Bi .
The chosen leaf It is se-
lected by following a path
from the root to a leaf,
where at each node i , the
next node (child) is the
one with highest B-value.

Node i: Bi

Bj

Goal: Design B-values (upper bounds on the true values µi of
each node i) such that the resulting leaf selection policy maximizes
the expected sum of obtained rewards.
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Flat UCB

We implement UCB directly on the leaves:

Bi
def
=

{
X̂i ,ni

+
√

2 log(np)
ni

if i is a leaf,

maxj∈C(i) Bj otherwise.

Property (Chernoff-Hoeffding): With high probability, we have
Bi ≥ µi , for all nodes i .
Bound on the regret: any sub-optimal leaf j is visited in
expectation at most Enj = O(log(n)/∆2

j ) times (where
∆j = µ∗ − µj). Thus, the regret is bounded by:

ERn = O
(

log(n)
∑

j∈L,µj<µ∗

1

∆j

)
.

Problem: all leaves must be visited at least once!
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UCT (UCB applied to Trees)

UCT [Kocsis and Szepesvári, 2006]:

Bi
def
= X̂i ,ni

+

√
2 log(np)

ni

.

Intuition:

• Explore first the most promising branches

• Adapts automatically to the effective smoothness of the tree

Very good results in computer-go
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The MoGo program
Collaborative work with Yizao Wang, Sylvain Gelly, Olivier Teytaud
and many others. See [Gelly et al., 2006].

• Explore-Exploit with UCT
(Min-Max)

• Monte-Carlo evaluation

• Asymmetric tree
expansion

• Anytime algo

• Use of features

• World computer-go
champion

Interestingly: stochastic methods for deterministic problem!
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Analysis of UCT

Properties:

• The obtained rewards at a (non-leaf) node i are not i.i.d.

• Thus the B values are not upper confidence bounds on the
node values

• However, all leaves are eventually visited infinitely,

• thus the algorithm is eventually consistent: the regret is
O(log(n)) after an initial period...

• which may last very ... very long!
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Bad case for UCT

Consider the tree:

The left branches seem to be the
best thus are explored for a very

long time before the optimal leaf
is eventually reached.
The expected regret is disastrous:

ERn = Ω(exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . . )))+O(log(n)).

Much much worst than uniform
exploration!

D−1

D

D−2

D

D−3

D

1

D

10
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In short...

So far we have seen:

• Flat-UCB: does not exploit possible smoothness, but very
good in the worst case!

• UCT:
• indeed adapts automatically to the effective smoothness of the

tree,
• but the price of this adaptivity may be very very high.
• In good cases, UCT is VERY efficient!
• In bad cases, UCT is VERY poor!

We should use the actual smoothness of the problem, if any, to
design relevant algorithms.
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BAST (Bandit Algorithm for Smooth Trees)

(Joint work with Pierre-Arnaud Coquelin)
Assumption: along an optimal
path, for each node i of depth d ,
for all leaves j ∈ L(i),

µ∗ − µj ≤ δd ,

where δd is a smoothness function
Examples: holds for function op-
timization or discounted control. j*

iNode

µ

Optimal path

µ 

Define the B-values:

Bi
def
= min

{
maxj∈C(i) Bj ,

X̂i ,ni
+

√
2 log(np)

ni
+ δd

Remark:
UCT = (BAST with δd = 0). Flat-UCB = (BAST with δd = ∞).
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Properties of BAST

Properties:

• These B-values are true upper confidence bounds on the
optimal nodes value,

• The tree grows in an asymmetric way, leaving mainly
unexplored the sub-optimal branches,

• Only the optimal path is essentially explored.

Regret analysis of BAST... will come in a moment as a special
case of a more general framework (bandits in metric spaces).
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Multi-armed bandits in metric spaces

Let X be a metric space with l(x , y) a distance. Let f (x) be a
Lipschitz function:

|f (x) − f (y)| ≤ l(x , y).

Write f ∗
def
= supx∈X f (x).

Multi-armed bandit problem on X : At each round t, choose a
point (arm) xt , receive reward rt independent sample drawn from a
distribution ν(xt) with mean f (xt).

Goal: minimize regret: Rn
def
=

∑n
t=1 f ∗ − rt .

Examples:

• Tree search with smooth rewards

• Optimization in continuous space of a Lipschitz function,
given noisy evaluations
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Hierarchical Optimistic Optimization
(Joint work with S. Bubeck, G. Stoltz, Cs. Szepesvári)

• Consider a tree of partitions of X ,

• Each node i corresponds to a domain Di of the state space.

Write diam(i) = supx ,y∈Di
l(x , y) the diameter of Di . Let Tt

denote the set of expanded nodes at round t.
Algorithm:

• Start with T1 = {root}. (whole domain X )

• At each round t, follow a path from the root to a leaf it of Tt

by maximizing the B-values,

• Expand the node it : choose (arbitrarily) a point xt ∈ Dit , and
add it to Tt ,

• Observe reward rt ∼ ν(xt) and update the B-values:

Bi
def
= min

[
max
j∈C(i)

Bj , X̂i ,ni
+

√
2 log(n)

ni

+ diam(i)
]
,
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Application to continuous optimization

Problem:
Optimize a Lipschitz function f ,
given noisy evaluations.

Example in 1d:
The (infinite) tree represents a bi-
nary splitting of [0, 1] at all scales.

Rewards:
rt ∼ B(f (xt)) a Bernoulli with pa-
rameter f (xt), where xt is the cho-
sen point at time t.
If f is L-Lipschitz, then the
smoothness assumption holds
with the metric l(x , y) = L|x−y |.
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Resulting tree for the optimization problem
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Analysis of the regret

• Let d be the dimension of X (ie. such that we need O(ε−d)
balls of radius ε to cover X ). Then

ERn = O(n
d+1
d+2 ).

• We also have a lower bound ERn = Ω(n
d+1
d+2 ) [Kleinberg et al.,

2008]

• Let d ′ be the near-optimality dimension of f in X : i.e. such
that we need O(ε−d ′

) balls of radius ε to cover

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}.

Then

ERn = O(n
d′+1
d′+2 ).

Much better!!!
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Powerful generalization

Actually we don’t need the assumption that X is metric, neither
that f is Lipschitz! But (almost) only that f is one-sided locally
Lipschitz around its max w.r.t. a dissimilarity measure l , i.e.

f ∗ − f (y) ≤ l(x∗, y).

Interesting example:
Consider X = [0, 1]d . Assume that f is locally Hölder (with order
α) around its maximum, i.e. f ∗ − f (y) = Θ(||x∗ − y ||α).
Then we may choose l(x , y) = ||x − y ||α, and Xε is is thus covered
by O(1) ball of radius ε. Thus the near-optimality dimension
d ′ = 0, and the regret is:

ERn = O(
√

n),

whatever the dimension of the space d !
→ Optimization is not more difficult than integration
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Let’s go back to the trees...

• but in a very simplified setting: rewards are deterministic

• Still we want to investigate the “optimistic” exploration
strategy

• Application to planning
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Application to planning

(Joint work with Jean-François Hren)
Consider a controlled deterministic system with discounted

rewards.

• From the current state xt , consider the look-ahead tree of all
possible reachable states.

• Use n computational resources (CPU time, number of calls to
a generative model) to explore the tree and return a proposed
actions at

• This induces a policy πn

• Goal: Minimize the loss resulting from using policy πn instead
of an optimal one:

Rn
def
= V ∗ − V πn
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Look-ahead tree for planning in deterministic systems

At time t, for the current state xt . Build the look-ahead tree:

• Root of the tree = current state xt

• Nodes = reachable states by a
sequence of actions,

• Receive discounted sum of rewards
along the path:

∑

t≥0

γt rt ,

• Explore the tree using n
computational resources

• Propose an action as close as
possible to the optimal one

Path

action 1 action 2

Initial state
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Optimistic exploration

(BAST/HOO algo in deterministic setting)
• For any node i of depth d ,

define the B-values:

Bi
def
=

d−1∑

t=0

γtrt +
γd

1 − γ
≥ vi

• At each round n, expand the
node with highest B-value

• Observe reward, update
B-values,

• Repeat until no more
available resources

• Return maximizing action

Optimal path

Expanded
nodes

Node i
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Analysis of the regret

Define β such that the proportion of ǫ-optimal paths is O(ǫβ).
Let

κ
def
= Kγβ ∈ [1,K ].

• If κ > 1, then

Rn = O

(
n−

log 1/γ
log κ

)
.

(recall that for the uniform planning Rn = O
(
n−

log 1/γ
log K

)
.)

• If κ = 1, then Rn = O
(
γ

(1−γ)β

c
n
)
, where c defined by the

proportion of ǫ-path being bounded by cǫβ. This provides
exponential rates.
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Some intuition

Write T∞ the tree of all expandable nodes:

T∞ = {node i of depth d s.t. vi +
γd

1 − γ
≥ v∗}

• T∞ = set of nodes from which one cannot decide whether the
node is optimal or not,

• At any round n, the set of expanded nodes Tn ⊂ T∞,

• κ = branching factor of T∞.

The regret

Rn = O

(
n−

log 1/γ
log κ

)
,

comes from a search in the tree T∞ with branching factor
κ ∈ [1,K ].



Introduction to bandits Tree search Optimization Planning

Upper and lower bounds

For any κ ∈ [1,K ].

• Define Pκ as the set of problems having a κ-value.

• For any problem P ∈ Pκ, write RA(P)(n) the regret of using
the algorithm A on the problem P with n computational
resources.

Then:

sup
P∈Pκ

RAuniform(P)(n) = Θ(n
−

log 1/γ
log K )

sup
P∈Pκ

RAoptimistic (P)(n) = Θ(n
−

log 1/γ
log κ ).
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Numerical illustration

2d problem: x = (u, v).
Dynamics:

(
ut+1

vt+1

)
=

(
ut + vt∆t

vt + at∆t

)

Reward: r(u, v) = −u2.

Set of expanded nodes (n = 3000) using the uniform planning.
Max depth = 10.
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Numerical illustration

The exploration of the
poor paths is shallow.
The good paths are ex-
plored in deeper depths.

Set of expanded nodes (n = 3000) using the optimistic planning.
Max depth = 43.
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Two inverted pendulum linked with a spring

State space of dimension 8
4 actions
n = 3000 at each iteration
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