
Introduction to bandits Tree search Optimization Planning

Bandit algorithms for tree search

Applications to games, optimization, and
planning

Rémi Munos

SequeL project: Sequential Learning
http://sequel.futurs.inria.fr/

INRIA Lille - Nord Europe

Journées MAS de la SMAI, Rennes 27-29 Août 2008

http://sequel.futurs.inria.fr/

Introduction to bandits Tree search Optimization Planning

Bandit algorithms for tree search
Applications to games, optimization, and planning

Outline of the talk:

• The multi-armed bandit problem

• A hierarchical of bandits
• Application to tree search
• Application to optimization
• Application to planning

Introduction to bandits Tree search Optimization Planning

Exploration vs Exploitation in decision making

In an uncertain world, maybe partially observable, maybe
adversarial, how should we make decisions?

• Exploit: act optimally according to our current beliefs

• Explore: learn more about the environment

Tradeoff between exploration and exploitation.
Appears in optimization/learning problems, such as in
reinforcement learning.

Introduction to bandits Tree search Optimization Planning

Introduction to multi-armed bandits

General setting:

• At each round, several options (actions)
are available to choose from.

• A reward is provided according to the
choice made.

• Our goal is to optimize the sum of
rewards.

Many potential applications:

• Clinical trials

• Advertising: what ad to put on a web-page?

• Labor markets: which job a worker should choose?

• Optimization of noisy function

• Numerical resource allocation

Introduction to bandits Tree search Optimization Planning

Example: a two-armed bandit

Say, there are 2 arms:

We have pulled the arms so far:

Time 1 2 3 4 5 6 7 8 ...

Arm pulled 1 2 1 1 2 1 1 1

Reward arm 1 10 9 11 12 8 10

Reward arm 2 0 14

Which arm should we pull next?

• What are the assumption about the rewards?

• What is really our goal?

Introduction to bandits Tree search Optimization Planning

The stochastic bandit problem

Setting:

• Set of K arms, defined by random variables Xk ∈ [0, 1], whose
law is unknown,

• At each time t, choose an arm kt and receive reward

xt
i .i .d.∼ Xkt

.

Goal: find an arm selection policy such as to maximize the
expected sum of rewards.

Definitions :

• Let µk = E[Xk] be the expected value of arm k.

• Let µ∗ = maxk µk the optimal value, and k∗ an optimal arm.

Introduction to bandits Tree search Optimization Planning

Exploration-exploitation tradeoff
Define the cumulative regret:

Rn
def
=

n∑

t=1

µ∗ − µkt
.

Property: Write ∆k
def
= µ∗ − µk , then

Rn =
K∑

k=1

nk∆k ,

with nk the number of times arm k has been pulled up to time n.
(regret results from pulling sub-optimal arms because of lack of
information about an optimal one)
Goal: Find an arm selection policy such as to minimize Rn.

• Should we explore or exploit?

• Asymptotically consistent? (per-round regret Rn/n → 0, i.e.
1
n

∑
t µkt

→ µ∗).

Introduction to bandits Tree search Optimization Planning

Proposed solutions to the bandit problem?

This is an old problem! [Robbins, 1952]
(maybe surprisingly) not fully solved yet!
Many proposed solutions. Examples:

• ǫ-greedy exploration: choose apparent best action with
proba 1 − ǫ, or random action with proba ǫ,

• Bayesian exploration: assign prior to the arm distributions
and based on the rewards, choose the arm with best posterior
mean, or with highest probability of being the best

• Optimistic exploration: choose an arm that has a possibility
of being the best

• Boltzmann exploration: choose arm k with proba
∝ exp(1

T
X̂k)

• etc.

Introduction to bandits Tree search Optimization Planning

The UCB algorithm

Upper Confidence Bounds algorithm [Auer et al. 2002]: at each
time n, select an arm

arg max
k

Bk,nk ,n,

with

Bk,nk ,n
def
=

1

nk

nk∑

s=1

xk,s

︸ ︷︷ ︸
bXk,nk

+

√
2 log(n)

nk︸ ︷︷ ︸
cnk ,n

,

where

• nk is the number of times arm k has been pulled up to time n

• xk,s is the s-th reward obtained when pulling arm k.

Note that

• Sum of an exploitation term and an exploration term.

• cnk ,n is a confidence interval term, so Bk,nk ,n is a UCB.

Introduction to bandits Tree search Optimization Planning

Intuition behind the UCB algorithm

Idea:

• Select an arm that has a high probability of being the best,
given what has been observed so far.

• ”Optimism under the face of uncertainty” strategy

Why?

• The B-values Bk,nk ,n are Upper-Confidence-Bounds on µk :
Indeed, from Chernoff-Hoeffding inequality,

P(X̂k,t +

√
2 log(n)

t
≤ µk) ≤ e−2n 2 log(n)

t ≤ n−4.

Introduction to bandits Tree search Optimization Planning

Regret bound for UCB

Proposition

Each sub-optimal arm k is visited in average, at most:

Enk(n) ≤ 8
log n

∆2
k

+ cst

times (where ∆k
def
= µ∗ − µk > 0).

Thus the expected regret is bounded by:

ERn =
∑

k

E[nk]∆k ≤ 8
∑

k:∆k >0

log n

∆k

+ cst.

This is optimal (up to sub-log terms) since ERn = Ω(log n) [Lai
and Robbins, 1985].

Introduction to bandits Tree search Optimization Planning

Intuition of the proof

Let k be a sub-optimal arm, and k∗ be an optimal arm. At time n,
if arm k is selected, this means that

Bk,nk ,n ≥ Bk∗,nk∗ ,n

X̂k,nk
+

√
2 log(n)

nk

≥ X̂k∗,nk∗
+

√
2 log(n)

nk∗

µk + 2

√
2 log(n)

nk

≥ µ∗, with high proba

nk ≤ 8 log(n)

∆2
k

Thus with high probability, if nk > 8 log(n)
∆2

k

, then arm k will not be

selected. Thus nk ≤ 8 log(n)
∆2

k

+ 1 with high proba.

Introduction to bandits Tree search Optimization Planning

Sketch of proof
Write u = 8 log(n)

∆2
k

+ 1. We have:

nk(n) − u ≤
n∑

t=u+1

1kt=k;nk (t)>u ≤
n∑

t=u+1

1∃s:u<s≤t,∃s∗:1≤s∗≤t, s.t. Bk,s,t≥Bk∗,s∗,t

≤
n∑

t=u+1

[
1∃s:u<s≤t s.t. Bk,s,t>µ∗ + 1∃s∗:1≤s∗≤t s.t. Bk∗,s∗,t≤µ∗

]

≤
n∑

t=u+1

[t∑

s=u+1

1Bk,s,t>µ∗ +

t∑

s=1

1Bk∗,s,t≤µ∗

]

Now, taking the expectation of both sides,

E[nk(n)] − u ≤
n∑

t=u+1

[t∑

s=u+1

P
(
Bk,s,t > µ∗

)
+

t∑

s=1

P
(
Bk∗,s,t ≤ µ∗

)]

≤
n∑

t=u+1

[t∑

s=u+1

t−4 +

t∑

s=1

t−4
]
≤ π2

3

Introduction to bandits Tree search Optimization Planning

PAC-UCB

Let β > 0, by slightly changing the confidence interval term, i.e.

Bk,t
def
= X̂k,t +

√
log(Kt2β−1)

t
,

then

P

(∣∣X̂k,t−µk

∣∣ ≤
√

log(Kt2β−1)

t
,∀k ∈ {1, . . . ,K},∀t ≥ 1

)
≥ 1−β.

PAC-UCB [Audibert et al. 2007]: with probability 1 − β, the
regret is bounded by a constant independent of n:

Rn ≤ 6 log(Kβ−1)
∑

k:∆k>0

1

∆k

.

Introduction to bandits Tree search Optimization Planning

Hierarchy of bandits

• Bandit (or regret minimization) algorithms = methods for
rapidly selecting the best action.

• Hierarchy of bandits: the reward obtained when pulling an
arm is itself the return of another bandit in a hierarchy.
Applications to

• tree search,
• optimization,
• planning

Introduction to bandits Tree search Optimization Planning

The tree search problem

• To each leaf j ∈ L of a
tree is assigned a random
variable Xj ⊂ [0, 1]
whose law is unknown.

• At each time t, a leaf
It ∈ L is selected and a

reward xt
iid∼ XIt is

received. j

jj = E[]
* max j

j L

max
L(i)

iµ = µj
iNode :

X

Xµ
µ = µ

j

jLeaf :
Random variable:

Value of leaf j:

*
Optimal leaf

Optimal path

Goal: find an exploration policy that maximizes the expected sum
of obtained rewards.
Idea: use bandit algorithms for efficient tree exploration

Introduction to bandits Tree search Optimization Planning

UCB-based leaf selection policy

Leaf selection policy:

To each node i is assigned
a value Bi .
The chosen leaf It is se-
lected by following a path
from the root to a leaf,
where at each node i , the
next node (child) is the
one with highest B-value.

Node i: Bi

Bj

Goal: Design B-values (upper bounds on the true values µi of
each node i) such that the resulting leaf selection policy maximizes
the expected sum of obtained rewards.

Introduction to bandits Tree search Optimization Planning

Flat UCB

We implement UCB directly on the leaves:

Bi
def
=

{
X̂i ,ni

+
√

2 log(np)
ni

if i is a leaf,

maxj∈C(i) Bj otherwise.

Property (Chernoff-Hoeffding): With high probability, we have
Bi ≥ µi , for all nodes i .
Bound on the regret: any sub-optimal leaf j is visited in
expectation at most Enj = O(log(n)/∆2

j) times (where
∆j = µ∗ − µj). Thus, the regret is bounded by:

ERn = O
(

log(n)
∑

j∈L,µj<µ∗

1

∆j

)
.

Problem: all leaves must be visited at least once!

Introduction to bandits Tree search Optimization Planning

UCT (UCB applied to Trees)

UCT [Kocsis and Szepesvári, 2006]:

Bi
def
= X̂i ,ni

+

√
2 log(np)

ni

.

Intuition:

• Explore first the most promising branches

• Adapts automatically to the effective smoothness of the tree

Very good results in computer-go

Introduction to bandits Tree search Optimization Planning

The MoGo program
Collaborative work with Yizao Wang, Sylvain Gelly, Olivier Teytaud
and many others. See [Gelly et al., 2006].

• Explore-Exploit with UCT
(Min-Max)

• Monte-Carlo evaluation

• Asymmetric tree
expansion

• Anytime algo

• Use of features

• World computer-go
champion

Interestingly: stochastic methods for deterministic problem!

Introduction to bandits Tree search Optimization Planning

Analysis of UCT

Properties:

• The obtained rewards at a (non-leaf) node i are not i.i.d.

• Thus the B values are not upper confidence bounds on the
node values

• However, all leaves are eventually visited infinitely,

• thus the algorithm is eventually consistent: the regret is
O(log(n)) after an initial period...

• which may last very ... very long!

Introduction to bandits Tree search Optimization Planning

Bad case for UCT

Consider the tree:

The left branches seem to be the
best thus are explored for a very

long time before the optimal leaf
is eventually reached.
The expected regret is disastrous:

ERn = Ω(exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . .)))+O(log(n)).

Much much worst than uniform
exploration!

D−1

D

D−2

D

D−3

D

1

D

10

Introduction to bandits Tree search Optimization Planning

In short...

So far we have seen:

• Flat-UCB: does not exploit possible smoothness, but very
good in the worst case!

• UCT:
• indeed adapts automatically to the effective smoothness of the

tree,
• but the price of this adaptivity may be very very high.
• In good cases, UCT is VERY efficient!
• In bad cases, UCT is VERY poor!

We should use the actual smoothness of the problem, if any, to
design relevant algorithms.

Introduction to bandits Tree search Optimization Planning

BAST (Bandit Algorithm for Smooth Trees)

(Joint work with Pierre-Arnaud Coquelin)
Assumption: along an optimal
path, for each node i of depth d ,
for all leaves j ∈ L(i),

µ∗ − µj ≤ δd ,

where δd is a smoothness function
Examples: holds for function op-
timization or discounted control. j*

iNode

µ

Optimal path

µ

Define the B-values:

Bi
def
= min

{
maxj∈C(i) Bj ,

X̂i ,ni
+

√
2 log(np)

ni
+ δd

Remark:
UCT = (BAST with δd = 0). Flat-UCB = (BAST with δd = ∞).

Introduction to bandits Tree search Optimization Planning

Properties of BAST

Properties:

• These B-values are true upper confidence bounds on the
optimal nodes value,

• The tree grows in an asymmetric way, leaving mainly
unexplored the sub-optimal branches,

• Only the optimal path is essentially explored.

Regret analysis of BAST... will come in a moment as a special
case of a more general framework (bandits in metric spaces).

Introduction to bandits Tree search Optimization Planning

Multi-armed bandits in metric spaces

Let X be a metric space with l(x , y) a distance. Let f (x) be a
Lipschitz function:

|f (x) − f (y)| ≤ l(x , y).

Write f ∗
def
= supx∈X f (x).

Multi-armed bandit problem on X : At each round t, choose a
point (arm) xt , receive reward rt independent sample drawn from a
distribution ν(xt) with mean f (xt).

Goal: minimize regret: Rn
def
=

∑n
t=1 f ∗ − rt .

Examples:

• Tree search with smooth rewards

• Optimization in continuous space of a Lipschitz function,
given noisy evaluations

Introduction to bandits Tree search Optimization Planning

Hierarchical Optimistic Optimization
(Joint work with S. Bubeck, G. Stoltz, Cs. Szepesvári)

• Consider a tree of partitions of X ,

• Each node i corresponds to a domain Di of the state space.

Write diam(i) = supx ,y∈Di
l(x , y) the diameter of Di . Let Tt

denote the set of expanded nodes at round t.
Algorithm:

• Start with T1 = {root}. (whole domain X)

• At each round t, follow a path from the root to a leaf it of Tt

by maximizing the B-values,

• Expand the node it : choose (arbitrarily) a point xt ∈ Dit , and
add it to Tt ,

• Observe reward rt ∼ ν(xt) and update the B-values:

Bi
def
= min

[
max
j∈C(i)

Bj , X̂i ,ni
+

√
2 log(n)

ni

+ diam(i)
]
,

Introduction to bandits Tree search Optimization Planning

Application to continuous optimization

Problem:
Optimize a Lipschitz function f ,
given noisy evaluations.

Example in 1d:
The (infinite) tree represents a bi-
nary splitting of [0, 1] at all scales.

Rewards:
rt ∼ B(f (xt)) a Bernoulli with pa-
rameter f (xt), where xt is the cho-
sen point at time t.
If f is L-Lipschitz, then the
smoothness assumption holds
with the metric l(x , y) = L|x−y |.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Location of the leaf

n=104

n=106

Shape of f

µ =1∗

Introduction to bandits Tree search Optimization Planning

Resulting tree for the optimization problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Location of the leaf

n=104

n=106

Shape of f

µ =1∗

Resulting tree at stage n = 4000.

Introduction to bandits Tree search Optimization Planning

Analysis of the regret

• Let d be the dimension of X (ie. such that we need O(ε−d)
balls of radius ε to cover X). Then

ERn = O(n
d+1
d+2).

• We also have a lower bound ERn = Ω(n
d+1
d+2) [Kleinberg et al.,

2008]

• Let d ′ be the near-optimality dimension of f in X : i.e. such
that we need O(ε−d ′

) balls of radius ε to cover

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}.

Then

ERn = O(n
d′+1
d′+2).

Much better!!!

Introduction to bandits Tree search Optimization Planning

Powerful generalization

Actually we don’t need the assumption that X is metric, neither
that f is Lipschitz! But (almost) only that f is one-sided locally
Lipschitz around its max w.r.t. a dissimilarity measure l , i.e.

f ∗ − f (y) ≤ l(x∗, y).

Interesting example:
Consider X = [0, 1]d . Assume that f is locally Hölder (with order
α) around its maximum, i.e. f ∗ − f (y) = Θ(||x∗ − y ||α).
Then we may choose l(x , y) = ||x − y ||α, and Xε is is thus covered
by O(1) ball of radius ε. Thus the near-optimality dimension
d ′ = 0, and the regret is:

ERn = O(
√

n),

whatever the dimension of the space d !
→ Optimization is not more difficult than integration

Introduction to bandits Tree search Optimization Planning

Let’s go back to the trees...

• but in a very simplified setting: rewards are deterministic

• Still we want to investigate the “optimistic” exploration
strategy

• Application to planning

Introduction to bandits Tree search Optimization Planning

Application to planning

(Joint work with Jean-François Hren)
Consider a controlled deterministic system with discounted

rewards.

• From the current state xt , consider the look-ahead tree of all
possible reachable states.

• Use n computational resources (CPU time, number of calls to
a generative model) to explore the tree and return a proposed
actions at

• This induces a policy πn

• Goal: Minimize the loss resulting from using policy πn instead
of an optimal one:

Rn
def
= V ∗ − V πn

Introduction to bandits Tree search Optimization Planning

Look-ahead tree for planning in deterministic systems

At time t, for the current state xt . Build the look-ahead tree:

• Root of the tree = current state xt

• Nodes = reachable states by a
sequence of actions,

• Receive discounted sum of rewards
along the path:

∑

t≥0

γt rt ,

• Explore the tree using n
computational resources

• Propose an action as close as
possible to the optimal one

Path

action 1 action 2

Initial state

Introduction to bandits Tree search Optimization Planning

Optimistic exploration

(BAST/HOO algo in deterministic setting)
• For any node i of depth d ,

define the B-values:

Bi
def
=

d−1∑

t=0

γtrt +
γd

1 − γ
≥ vi

• At each round n, expand the
node with highest B-value

• Observe reward, update
B-values,

• Repeat until no more
available resources

• Return maximizing action

Optimal path

Expanded
nodes

Node i

Introduction to bandits Tree search Optimization Planning

Analysis of the regret

Define β such that the proportion of ǫ-optimal paths is O(ǫβ).
Let

κ
def
= Kγβ ∈ [1,K].

• If κ > 1, then

Rn = O

(
n−

log 1/γ
log κ

)
.

(recall that for the uniform planning Rn = O
(
n−

log 1/γ
log K

)
.)

• If κ = 1, then Rn = O
(
γ

(1−γ)β

c
n
)
, where c defined by the

proportion of ǫ-path being bounded by cǫβ. This provides
exponential rates.

Introduction to bandits Tree search Optimization Planning

Some intuition

Write T∞ the tree of all expandable nodes:

T∞ = {node i of depth d s.t. vi +
γd

1 − γ
≥ v∗}

• T∞ = set of nodes from which one cannot decide whether the
node is optimal or not,

• At any round n, the set of expanded nodes Tn ⊂ T∞,

• κ = branching factor of T∞.

The regret

Rn = O

(
n−

log 1/γ
log κ

)
,

comes from a search in the tree T∞ with branching factor
κ ∈ [1,K].

Introduction to bandits Tree search Optimization Planning

Upper and lower bounds

For any κ ∈ [1,K].

• Define Pκ as the set of problems having a κ-value.

• For any problem P ∈ Pκ, write RA(P)(n) the regret of using
the algorithm A on the problem P with n computational
resources.

Then:

sup
P∈Pκ

RAuniform(P)(n) = Θ(n
−

log 1/γ
log K)

sup
P∈Pκ

RAoptimistic (P)(n) = Θ(n
−

log 1/γ
log κ).

Introduction to bandits Tree search Optimization Planning

Numerical illustration

2d problem: x = (u, v).
Dynamics:

(
ut+1

vt+1

)
=

(
ut + vt∆t

vt + at∆t

)

Reward: r(u, v) = −u2.

Set of expanded nodes (n = 3000) using the uniform planning.
Max depth = 10.

Introduction to bandits Tree search Optimization Planning

Numerical illustration

The exploration of the
poor paths is shallow.
The good paths are ex-
plored in deeper depths.

Set of expanded nodes (n = 3000) using the optimistic planning.
Max depth = 43.

Introduction to bandits Tree search Optimization Planning

Two inverted pendulum linked with a spring

State space of dimension 8
4 actions
n = 3000 at each iteration

Introduction to bandits Tree search Optimization Planning

References

• J.Y. Audibert, R. Munos, and C. Szepesvari, Tuning bandit algorithms in

stochastic environments, ALT, 2007.

• P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite time analysis of the

multiarmed bandit problem, Machine Learning, 2002.

• S. Bubeck, R. Munos, G. Stoltz, Cs. Szepesvari Online Optimization in

X-armed Bandits, submitted to NIPS, 2008.

• P.-A. Coquelin and R. Munos, Bandit Algorithm for Tree Search, UAI

2007.

• S. Gelly, Y. Wang, R. Munos, and O. Teytaud, Modification of UCT with

Patterns in Monte-Carlo Go, RR INRIA, 2006.

Introduction to bandits Tree search Optimization Planning

References (cont’ed)

• J.-F. Hren and R. Munos, Optimistic planning in deterministic systems.

Research report INRIA, 2008.

• M. Kearns, Y. Mansour, A. Ng, A Sparse Sampling Algorithm for

Near-Optimal Planning in Large Markov Decision Processes, Machine

Learning, 2002.

• R. Kleinberg, Nearly tight bounds for the continuum-armed bandit

problem, NIPS 2004.

• R. Kleinberg, A. Slivkins, and E. Upfal, Multi-Armed Bandits in Metric

Spaces, ACM Symposium on Theory of Computing, 2008.

• L. Kocsis and Cs. Szepesvári, Bandit based Monte-Carlo Planning, ECML

2006.

• T. L. Lai and H. Robbins, Asymptotically Efficient Adaptive Allocation

Rules, Advances in Applied Mathematics, 1985.

	Introduction to bandits
	Tree search
	Optimization
	Planning

