Traffic theory for the Internet and the future Internet

Orange Labs

Jim Roberts, Research & Development
29 August 2008, MAS Seminar
Internet traffic theory

- understanding the relationship between demand, capacity and performance
- sizing for performance objectives
 - what traffic characteristics are important?
- designing efficient traffic controls
 - to meet diverse QoS requirements

<table>
<thead>
<tr>
<th>demand</th>
<th>capacity</th>
<th>performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume</td>
<td>bandwidth</td>
<td>response time</td>
</tr>
<tr>
<td>characteristics</td>
<td>how it is shared</td>
<td>latency</td>
</tr>
</tbody>
</table>

an example:
- Erlang’s formula

\[B = \frac{A^N / N!}{\sum_{0 \leq i \leq N} A^i / i!} \]

\(B \) is blocking probability when \(N \) trunks are offered demand \(A \)
The Internet and the future Internet

- the Internet, a victim of its success
 - all services are converging to IP, the Internet is indispensable
 - but IP was never designed for this and deficiencies are increasingly apparent: security, mobility, QoS,...
- some advocate a clean slate design?
 - GENI/FIND in the US, projects in Asia
 - FP7 programme on Network of the future: 4WARD, PSIRP, ...
- so, if we can start from scratch, how should the network be designed to meet QoS requirements?
 - accounting for the lessons of traffic theory
 - [and the realities of the Internet business environment,...]
outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing
Composition of Internet traffic

Jan 2007

June 2008

P2P
Web
streaming
What traffic in the future Internet?

- more video? less P2P? ... new unimagined applications!
- but we can still distinguish two broad types of traffic:
 - open-loop controlled streaming traffic
 - audio and video, real time and playback
 - rate and duration are intrinsic characteristics
 - QoS ⇒ negligible loss and delay
 - closed-loop controlled elastic traffic
 - digital documents (movies, Web pages, files, ...)
 - rate and duration are measures of performance
 - QoS ⇒ adequate response time
- without forgetting adaptive rate coding, progressive download,...
Internet traffic is self-similar

- It is well established that the packet arrival process is self-similar (and even multi-fractal)
- Plausible explanations have been provided:
 - Heavy-tailed flow size distribution
 - ... and TCP induced burstiness
- But session arrivals are Poisson

![Log Pr [file size > x]](image)

Distribution of Web file size

![Ethernet traffic, Bellcore 1989](image)
A session traffic model

- observed at some point in the network, e.g., access, core link
- a session consists of a succession of flows separated by "think times"
 - flow characteristics: size, peak rate, number of TCPs,...
 - think times begin at the end of each flow
 - sessions are mutually independent
- sessions occur as a homogeneous Poisson process
 - an Internet "invariant": [Floyd and Paxson, 2001]
outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing
Traffic theory for statistical multiplexing

- assume intrinsic traffic characteristics
 - flows are not rate adaptable
 - typical of conversational and streaming audio/video
- seek to understand performance
 - demand – capacity – performance
 - for link and buffer sizing and designing traffic controls
 - at flow, burst and packet time scales
Buffered and bufferless multiplexing

- consider a superposition of on-off flows and distinguish buffered and bufferless multiplexing
 - performance models for sizing and admission control
- buffered multiplexing
 - $\Pr \left[\text{delay} > T \right] < \varepsilon$
- bufferless multiplexing
 - $\Pr \left[\text{arrival rate} > \text{service rate} \right] < \varepsilon$
Statistical multiplexing performance: impact of traffic characteristics

- Pr [rate overload]
- log Pr [saturation]
- packet scale queuing
- burst scale queuing
- buffer size
Statistical multiplexing performance: impact of traffic characteristics

![Graph showing the relationship between log Pr [saturation] and buffer size, with shorter and longer burst lengths indicated.](image)
Statistical multiplexing performance: impact of traffic characteristics

- More variable
- Less variable

log Pr [saturation] vs. buffer size
Statistical multiplexing performance: impact of traffic characteristics

- Burst length
- Long range dependence
- Short range dependence

Graph showing log Pr [saturation] vs buffer size with trends for different traffic characteristics.
Prefer bufferless multiplexing for streaming traffic

- buffered multiplexing performance depends on detailed traffic characteristics
 - these characteristics are generally unknown and uncontrollable!
- bufferless multiplexing performance depends only on stationary rate distribution
- bufferless multiplexing can be efficient when flow rates are relatively small or streaming traffic is small proportion of whole
Bufferless multiplexing and packet scale queues

- a superposition of nominally constant rate bursts
 - $nD/D/1, \Sigma D_i/D/1, \Sigma D_i/D^{X_i}/1$ queues
 - delays upper bounded by $M/D_{\text{MTU}}/1$ (MTU is max packet size)
- but bursts acquire jitter in multiplexer queues
 - "negligible jitter conjecture": $M/D_{\text{MTU}}/1$ remains conservative,
 - partial justification but no proof!
 - except for a saturated tandem
- can use $M/D/1$ for sizing purposes

\begin{figure*}[h]
\centering
\includegraphics[width=\textwidth]{example_diagram.png}
\end{figure*}
Admission control for streaming traffic: much work but still no perfect solution!

- accept a new flow only if QoS preserved
 - given flow traffic descriptor
 - and current link status
- no satisfactory solution for buffered statistical multiplexing
 - unknown and uncontrollable traffic characteristics
 - means unpredictable performance
- measurement-based control for bufferless statistical multiplexing
 - given flow peak rate and current measured rate (instantaneous rate, mean, variance,...)
 - remains problematic (but see Grossglauser & Tse, 2003)
outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing
Packet loss and bandwidth sharing

- a queue with a multi-fractal arrival process
 - but loss and bandwidth related by TCP congestion control ("additive increase, multiplicative decrease")
 - the "square root formula": \(B(p) \approx \frac{k}{\sqrt{\text{RTT}} \sqrt{p}} \)

- loss is the result of bandwidth sharing
 - \(\Rightarrow \) study response times directly, not packet loss

- shares are inversely proportional to RTT
 - lower response times for short paths
Traffic theory for statistical bandwidth sharing

- elastic flows share link bandwidth
 - with some degree of fairness
 - through TCP congestion control
- flow performance is measured by the response time
 - that depends on its share of bandwidth
- traffic theory predicts response time for given capacity and traffic characteristics
 - an arrival process of finite sized flows
 - and a given sharing scheme
Processor sharing model of a single link

- flows arrive according to the session model
- share link bandwidth fairly (e.g., no RTT bias) ⇒ a simple stochastic network
- distribution of flow population on link: \(\pi(x) = (1 - \rho) \rho^x \)
- \(E[\text{response time} \mid \text{size} = s] = s / C(1 - \rho) \)
 - so "throughput" = \(C(1 - \rho) \)
- these results are insensitive:
 - to distributions of flow size, think time, number of flows per session
 - to correlations between successive sizes and times, ...
- because service rates are balanced: \(\phi_k(x) = \Phi(x - e_k) / \Phi(x) \) for each class \(k \)
 - cf. Whittle networks [Serfoso]
Throughput performance

- fairly shared link
 - throughput depends on link capacity C and traffic A, only
 - insensitivity extends to common flow peak rate c
- biased sharing (e.g., for different RTT)
 - unequal sharing is sensitive, but not much
 - unfairness significant only at high load
Bandwidth sharing in a network

- sharing for maximum utility (Kelly, etc.):
 - choose x_r to maximize $\sum U_r(x_r)$ subject to $\sum_{l \in r} x_r \leq C_l$
 - eg, for "proportional fair" sharing: $U_r(x) = \log x$

- a distributed rate adjustment algorithm
 - eg, for proportional fair:
 $$\frac{dx_r}{dt} = \kappa_r \left(w - x_r \sum_{l \in r} p_l \left(\sum_{j:l \in j} x_j \right) \right)$$
 - where $p_l(y)$ is the "price" of link l when its load is y: eg, $p=$ packet loss rate
 - a TCP-like algorithm: ie, additive increase, multiplicative decrease
Statistical bandwidth sharing in a network

- Let number of flows on path s be y_s
 - Assume same utility function and same peak rate c_s so they have equal shares
- Utility maximization determines state dependent service rates $\phi_s(y)$
 - Satisfying capacity constraints: $\phi_s(y) \leq y_s c_s$, $\sum_{s \in l} \phi_s(y) \leq C_l$
- In general, throughput performance evaluation is intractable
 - Eg, for proportional fairness or max-min fairness
Statistical bandwidth sharing in a network

- define the alternative "balanced fair" allocation (cf. Bonald & Proutière)
 - \(\phi_s(y) = \frac{\Phi(y-e_s)}{\Phi(y)} \)
 - for \(\Phi \) chosen such that the \(\phi_s \) saturate at least one capacity constraint

- by construction, balanced fair bandwidth sharing has a tractable product form state probability
 - \(\pi(y) = \pi(0) \Phi(y) \prod A_s^{y_s} \)
 - where \(A_s \) is traffic offered to path s
Properties of balanced fairness

- performance is insensitive for Poisson session traffic model
- computable performance for some interesting cases
 - link sharing with heterogeneous peak rates
 - toy topologies: trees,...
- simple performance bounds for expected response time $R_k(s)$

$$\max_{l \in \mathcal{R}_k} \left\{ \frac{s}{c_k}, \frac{s}{C_i - A_i} \right\} \leq R_k(s) \leq \frac{s}{c_k} + \sum_{l \in \mathcal{R}_k} \frac{s}{C_i - A_i}$$

- provable stability condition: $\rho_l < 1$ for all links
- performance roughly same as utility max allocations
 - eg, proportional fair, max-min fair
Comparison of balanced fairness and other kinds of fairness [BMPV06]
Comparison of balanced fairness and other kinds of fairness [BMPV06]

Figure 4: An asymmetric tree network and its capacity set.
Overload and admission control

- when $\rho_l > 1$, PS model predicts instability, ie, $\sum y_s \to \infty$
- in practice, implies a need for admission control
 - eg, refuse new flows if $\sum y_s = 100$
- however, if flow size has a heavy-tailed distribution, population explosion may not occur within busy period
Completion rate of PS server (Jean-Marie & Robert, 1994)

- Flow completion rate
- Hyperexponential flow size, $CV^2 = 200$
- Exponential flow size
- Constant flow size

Flow arrival rate vs. flow completion rate graph.
Overload and admission control

- when $\rho_l > 1$, PS model predicts instability, ie, $\Sigma y_s \rightarrow \infty$
- in practice, implies a need for admission control
 - eg, refuse new flows if $\Sigma y_s = 100$
- however, if flow size has a heavy-tailed distribution, population explosion may not occur within busy period
 - cf. results from Jean-Marie and Robert 1994
 - Σy_s may never reach 100 flows
Size-dependent sharing

- Throughput performance can be improved by scheduling flows "unfairly", accounting for their size
 - Eg, minimum expected response time by "shortest remaining processing time first" (SRPT) service
 - NB. utility maximization ignores this fact!
- Performance improves for all flows when size distribution is heavy-tailed
- Implementation in Internet
 - Practical size-based schedulers exist: least attained service, multi-level PS
 - Useful on access links, doubtful in core network
outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing
Integrating streaming and elastic traffic: performance

- class-based priority queuing
 - priority to streaming flows, rely on TCP for elastic flows
 - efficient bandwidth usage and (relatively) simple implementation

- performance analysis is difficult in general
 - "local instability" when residual capacity less than elastic traffic load
 - elastic throughput depends on mean and variance of instability periods
 ⇒ worse performance as streaming flows longer and more variable
 - instability impact less for high elastic flow size variability
 ⇒ better performance for more variable elastic flow size

\[
\text{local instability when elastic demand > } C - \Lambda_s(t)
\]
Integrating streaming and elastic traffic: admission control

- Admission control is applied to preserve performance in overload
 - i.e., reject new flows when rate would be less than threshold θ
 - Apply to streaming and elastic flows
- A quasi-stationary analysis is then accurate
 - i.e., assume streaming flow duration is very large so that elastic traffic attains stationary regime between streaming state changes
 - The approximation is insensitive
Implicit service differentiation

- class of service marking is problematic
 - charging, cheating, policing...
- per-flow fair queuing realizes implicit differentiation
 - imposes max-min sharing, for any congestion control
 - flows of rate < fair rate get low latency
- apply admission control to keep fair rate high enough in overload
- fair queuing is provably scalable
 - few bottlenecked flows, other flows rarely scheduled
outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing
Multi-path routing (in the future Internet)

- for greater reliability, better performance
- a utility maximization formulation (cf. Kelly, etc)
 - maximize $\sum U(x_s)$ subject to $\sum y_{si} \leq C_l$ for paths i used by route s
 - with $x_s = \sum_{i \in s} y_{si}$
- a distributed rate adjustment algorithm
 - eg, for proportional fair: $\frac{dy_{si}}{dt} = \kappa_r \left(w - x_s \sum_{l=r} p_l \left(\sum_{j:l=j} y_{tj} \right) \right)$
 - where p_l is the "price" of link l: eg, packet loss rate
 - note, multiplicative decrease is proportional to x_s
 - a coordinated congestion control protocol
Properties of coordinated congestion control multi-path routing

- traffic routed on minimum cost routes only
 - maximizes throughput in light traffic
 - short routes only in heavy traffic
- maximizes the traffic capacity (for any utility function)
 - a significant advantage in a toy 3-node network
- but optimality relies on accurate implementation of coordinated congestion control by end users

Uncoordinated max-min

\[\rho < 0.66 \]

Coordinated

\[\rho < 1 \]

Link capacity 1

Traffic per node pair \(\rho \) Poisson flows exponential size
Flow-aware multipath routing

- to avoid relying on end users
- routers locally impose per-flow fair sharing
 - sharing is max-min fair between sub-flows
 - uncoordinated congestion control leading to reduced capacity
- but, admission control can be applied selectively to avoid long paths in heavy traffic (cf "trunk reservation" in phone network)
 - satisfactory performance for triangle network
 - what about performance in a large network?

\[\rho < 1 \] for coordinated traffic
\[\rho < 0.66 \] for uncoordinated max-min traffic

Link capacity 1
Traffic per node pair \(\rho \)
Poisson flows
Exponential size
Impact of overlays?

- overlays like BitTorrent swarms already perform multi-path routing
 - ie, users choose best connected peers
- limited motivation to provide multiple paths (to improve performance and reliability)
- coordinated congestion control is hardly feasible
- is this unfair? should we care?
Conclusions: QoS in the future Internet

- taking account of the lessons of traffic theory
 - bufferless multiplexing for streaming flows
 - approximate fair sharing for elastic traffic
 - for (roughly) insensitive performance
- two alternative promising resource sharing mechanisms
 - distributed congestion control for maximum utility... but avoid relying on altruistic end users, or
 - network imposed per-flow fair sharing... but avoid relying on user flow identification
- though neither may satisfy business requirements or actors in the future Internet value chain!
thank you