Traffic theory for the Internet and the future Internet

Orange Labs

Jim Roberts, Research & Development 29 August 2008, MAS Seminar

Internet traffic theory

- understanding the relationship between demand, capacity and performance
- sizing for performance objectives
 - what traffic characteristics are important?
- designing efficient traffic controls
 - to meet diverse QoS requirements

demand

- volume
- characteristics

capacity

performance

- bandwidth
- how it is shared
- response timelatency

an example: - Erlang's formula

B is blocking probability when *N* trunks are offered demand *A*

The Internet and the future Internet

- the Internet, a victim of its success
 - all services are converging to IP, the Internet is indispensable
 - but IP was never designed for this and deficiencies are increasingly apparent: security, mobility, QoS,...
- some advocate a clean slate design?
 - GENI/FIND in the US, projects in Asia
 - FP7 programme on Network of the future: 4WARD, PSIRP, ...
- so, if we can start from scratch, how should the network be designed to meet QoS requirements?
 - accounting for the lessons of traffic theory
 - [and the realities of the Internet business environment,...]

outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing

Composition of Internet traffic

What traffic in the future Internet?

- more video? less P2P? ... new unimagined applications!
- but we can still distinguish two broad types of traffic:
 - open-loop controlled streaming traffic
 - audio and video, real time and playback
 - rate and duration are intrinsic characteristics
 - QoS \Rightarrow negligible loss and delay
 - closed-loop controlled elastic traffic
 - digital documents (movies, Web pages, files, ...)
 - rate and duration are measures of performance
 - $QoS \Rightarrow$ adequate response time
- without forgetting adaptive rate coding, progressive download,...

Internet traffic is self-similar

- it is well established that the packet arrival process is self-similar (and even multi-fractal)
- plausible explanations have been provided:
 - heavy-tailed flow size distribution
 - ... and TCP induced burstiness
- but session arrivals are Poisson

A session traffic model

- observed at some point in the network, eg, access, core link
- a session consists of a succession of flows separated by "think times"
 - flow characterics: size, peak rate, number of TCPs,...
 - think times begin at the end of each flow
 - sessions are mutually independent
- sessions occur as a homogeneous Poisson process
 - an Internet "invariant": [Floyd and Paxson, 2001]

outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing

Traffic theory for statistical multiplexing

- assume intrinsic traffic characteristics
 - flows are not rate adaptable
 - typical of conversational and streaming audio/video
- seek to understand performance
 - demand capacity performance
 - for link and buffer sizing and designing traffic controls
 - at flow, burst and packet time scales

Buffered and bufferless multiplexing

- consider a superposition of on-off flows and distinguish buffered and bufferless multiplexing
 - performance models for sizing and admission control
- buffered multiplexing
 - Pr [delay > T] < ε'
- bufferless multiplexing

Prefer bufferless multiplexing for streaming traffic

- buffered multiplexing performance depends on detailed traffic characteristics
 - these characteristics are generally unknown and uncontrollable!
- bufferless multiplexing performance depends only on stationary rate distribution
- bufferless multiplexing can be efficient when flow rates are relatively small or streaming traffic is small proportion of whole

Bufferless multiplexing and packet scale queues

- a superposition of nominally constant rate bursts
 - nD/D/1, $\Sigma D_i/D/1$, $\Sigma D_i/D^{Xi}/1$ queues
 - delays upper bounded by M/D_{MTU}/1 (MTU is max packet size)
- but bursts acquire jitter in multiplexer queues
 - "negligible jitter conjecture": M/D_{MTU}/1 remains conservative,
 - partial justification but no proof!
 - except for a saturated tandem
- can use M/D/1 for sizing purposes

Admission control for streaming traffic: much work but still no perfect solution!

- accept a new flow only if QoS preserved
 - given flow traffic descriptor
 - and current link status
- no satisfactory solution for buffered statistical multiplexing
 - unknown and uncontrollable traffic characteristics
 - means unpredictable performance
- measurement-based control for bufferless statistical multiplexing
 - given flow peak rate and current measured rate (instantaneous rate, mean, variance,...)
 - remains problematic (but see Grossglauser & Tse, 2003)

outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing

Packet loss and bandwidth sharing

- a queue with a multi-fractal arrival process
 - but loss and bandwidth related by TCP congestion control ("additive increase, multiplicative decrease")
- the "square root formula": $B(p) \approx \frac{k}{RTT \sqrt{p}}$ loss is the result of bandwidth sharing
- - \Rightarrow study response times directly, not packet loss
- shares are inversely proportional to RTT
 - lower response times for short paths

Traffic theory for statistical bandwidth sharing

- elastic flows share link bandwidth
 - with some degree of fairness
 - through TCP congestion control
- flow performance is measured by the response time
 - that depends on its share of bandwidth
- traffic theory predicts response time for given capacity and traffic characteristics
 - an arrival process of finite sized flows
 - and a given sharing scheme

Processor sharing model of a single link

- flows arrive according to the session model
- share link bandwidth fairly (eg, no RTT bias) \Rightarrow a simple stochastic network
- distribution of flow population on link: $\pi(x) = (1 \rho) \rho^{x}$
- E [response time | size = s] = s / $C(1 \rho)$
 - so "throughput" = $C(1 \rho)$
- these results are insensitive:
 - to distributions of flow size, think time, number of flows per session
 - to correlations between successive sizes and times,...
- because service rates are **balanced**: $\phi_k(x) = \Phi(x-e_k)/\Phi(x)$ for each class k
 - cf. Whittle networks [Serfoso]

Throughput performance

- throughput depends on link capacity C and traffic A, only
- insensitivity extends to common flow peak rate c
- biased sharing (eg, for different RTT)
 - unequal sharing **is** sensitive, but not much
 - unfairness significant only at high load

Bandwidth sharing in a network

- sharing for maximum utility (Kelly, etc.):
 - choose x_r to maximize $\Sigma_r U_r (x_r)$ subject to $\Sigma_{I \in r} x_r \le C_I$
 - eg, for "proportional fair" sharing: $U_r(x) = \log x$
- a distributed rate adjustment algorithm
 - eg, for proportional fair: $\frac{dx_r}{dt} = \kappa_r \left(w x_r \sum_{l \in r} p_l \left(\sum_{j:l \in j} x_j \right) \right)$
 - where p_i(y) is the "price" of link / when its load is y: eg, p=packet loss rate
 - a TCP-like algorithm: ie, additive increase, multiplicative decrease

Statistical bandwidth sharing in a network

- Iet number of flows on path s be y_s
 - assume same utility function and same peak rate c_s so they have equal shares
- utility maximization determines state dependent service rates $\phi_s(y)$
 - satisfying capacity constraints: $\phi_s(y) \le y_s c_s$, $\Sigma_{s \in I} \phi_s(y) \le C_I$
- in general, throughput performance evaluation is intractable

- eg, for proportional fairness or max-min fairness

Statistical bandwidth sharing in a network

- define the alternative "balanced fair" allocation (cf. Bonald & Proutière)
 - $\phi_{s}(y) = \Phi(y e_{s}) / \Phi(y)$
 - for Φ chosen such that the ϕ_s saturate at least one capacity constraint
- by construction, balanced fair bandwidth sharing has a tractable production form state probability
 - $\pi(y) = \pi(0) \Phi(y) \prod A_s^{ys}$
 - where A_s is traffic offered to path s

Properties of balanced fairness

- performance is insensitive for Poisson session traffic model
- computable performance for some interesting cases
 - link sharing with heterogeneous peak rates
 - toy topologies: trees,...
- simple performance bounds for expected response time $R_k(s)$

$$\max_{l \in r_k} \left\{ \frac{S}{C_k}, \frac{S}{C_l - A_l} \right\} \le R_k(S) \le \frac{S}{C_k} + \sum_{l \in r_k} \frac{S}{C_l - A_l}$$

- provable stability condition: $\rho_{\rm l} < 1$ for all links
- performance roughly same as utility max allocations
 - eg, proportional fair, max-min fair

Comparison of balanced fairness and other kinds of fairness [BMPV06]

Comparison of balanced fairness and other kinds of fairness [BMPV06]

Figure 4: An asymmetric tree network and its capacity set.

Overload and admission control

- when $\rho_l > 1$, PS model predicts instability, ie, $\Sigma y_s \rightarrow \infty$
- in practice, implies a need for admission control

- eg, refuse new flows if $\Sigma y_s = 100$

 however, if flow size has a heavy-tailed distribution, population explosion may not occur within busy period

Completion rate of PS server (Jean-Marie & Robert, 1994)

Overload and admission control

- when $\rho_{\rm l}$ > 1, PS model predicts instability, ie, $\Sigma \; {\rm y_s} \rightarrow \infty$
- in practice, implies a need for admission control

- eg, refuse new flows if $\Sigma y_s = 100$

- however, if flow size has a heavy-tailed distribution, population explosion may not occur within busy period
 - cf. results from Jean-Marie and Robert 1994
 - $-\Sigma y_s$ may never reach 100 flows

Flow completion rate

Size-dependent sharing

- throughput performance can be improved by scheduling flows "unfairly", accounting for their size
 - eg, minimum expected response time by "shortest remaining processing time first" (SRPT) service
 - NB. utility maximization ignores this fact!
- performance improves for all flows when size distribution is heavy-tailed
- implementation in Internet
 - practical size-based schedulers exist: least attained service, multi-level PS
 - useful on access links, doubtful in core network

outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing

Integrating streaming and elastic traffic: performance

- class-based priority queuing
 - priority to streaming flows, rely on TCP for elastic flows
 - efficient bandwidth usage and (relatively) simple implementation
- performance analysis is difficult in general
 - "local instability" when residual capacity less than elastic traffic load
 - elastic throughput depends on mean and variance of instability periods
 ⇒ worse performance as streaming flows longer and more variable
 - instability impact less for high elastic flow size variability

 \Rightarrow better performance for more variable elastic flow size

local instability when elastic demand $> C - \Lambda_s(t)$

Integrating streaming and elastic traffic: admission control

- admission control is applied to preserve performance in overload
 - ie, reject new flows when rate would be less than threshold θ
 - apply to streaming <u>and</u> elastic flows
- a quasi-stationary analysis is then accurate
 - ie, assume streaming flow duration is very large so that elastic traffic attains stationary regime between streaming state changes
 - the approximation is insensitive

Implicit service differentiation

- class of service marking is problematic
 - charging, cheating, policing...
- per-flow fair queuing realizes implicit differentiation
 - imposes max-min sharing, for any congestion control
 - flows of rate < fair rate get low latency
- apply admission control to keep fair rate high enough in overload
- fair queuing is provably scalable
 - few bottlenecked flows, other flows rarely scheduled

outline

- nature of Internet traffic
- performance of statistical multiplexing
- performance of statistical bandwidth sharing
- service differentiation
- multi-path routing

Multi-path routing (in the future Internet)

- for greater reliability, better performance
- a utility maximization formulation (cf. Kelly, etc)
 - maximize $\Sigma U(x_s)$ subject to $\Sigma y_{si} \leq C_l$ for paths i used by route s
 - with $x_s = \sum_{i \in S} y_{si}$
- a distributed rate adjustment algorithm
 - eg, for proportional fair: $\frac{dy_{si}}{dt} = \kappa_r \left(w x_s \sum_{l \in r} p_l \left(\sum_{tj:l \in tj} y_{tj} \right) \right)$
 - where p_l is the "price" of link I: eg, packet loss rate
 - note, multiplicative decrease is proportional to x_s
 - a coordinated congestion control protocol

Properties of coordinated congestion control multi-path routing

- traffic routed on minimum cost routes only
 - maximizes throughput in light traffic
 - short routes only in heavy traffic
- maximizes the traffic capacity (for any utility function)
 - a significant advantage in a toy 3-node network
- but optimality relies on accurate implementation of coordinated congestion control by end users

Flow-aware multipath routing

- to avoid relying on end users
- routers locally impose per-flow fair sharing
 - sharing is max-min fair between sub-flows
 - uncoordinated congestion control leading to reduced capacity

link capacity 1

Poisson flows

- but, admission control can be applied selectively to avoid long paths in heavy traffic (cf "trunk reservation" in phone network)
 - satisfactory performance for triangle network
 - what about performance in a large network?

Impact of overlays?

- overlays like BitTorrent swarms already perform multi-path routing
 - ie, users choose best connected peers
- limited motivation to provide multiple paths (to improve performance and reliability)
- coordinated congestion control is hardly feasible
- is this unfair? should we care?

Conclusions: QoS in the future Internet

- taking account of the lessons of traffic theory
 - bufferless multiplexing for streaming flows
 - approximate fair sharing for elastic traffic
 - for (roughly) insensitive performance
- two alternative promising resource sharing mechanisms
 - distributed congestion control for maximum utility... but avoid relying on altruistic end users, or
 - network imposed per-flow fair sharing... but avoid relying on user flow identification
- though neither may satisfy business requirements or actors in the future Internet value chain!

thank you

