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Context

Anti-angiogenesis treatments
• Promising anti-cancer therapy
• Need to evaluate effects of drugs in vivo
• Estimation of tissue microcirculation parameters
• Difference in microcirculation parameters along time =

measure of treatment impact
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Acquisition Protocol

Experiment
• Patient with ovary cancer
• Bolus injection of contrast agent
• Dynamic acquisition of gradient-echo MRI

Observation times
• Beginning 10 seconds after injection
• 130 images, every 2.4 seconds

Tissue microcirculation parameters
• Model of contrast agent pharmacokinetic
• Estimation of in vivo tissue microcirculation parameters
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Example of one image in the sequence
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Observation model

Measurement
• Intensity of gray level on a voxel I (t)
• Assumption : I (t) proportional to the quantity of contrast

agent in voxel Q(t)

I (t)− I (0) = Q(t)

Observations
• Discrete times t0, . . . , tn
• Noisy observations y

yi = Q(ti ) + σεi

εi ∼ N (0, 1)
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Pharmacokinetic model

Quantity of contrast agent in

• Arterial voxel: Arterial Input Function (AIF )
- Assumed to be known

• Non arterial voxel Q(t) = QP(t) + QI (t)
• Plasma: QP(t)
• Interstitium: QI (t)
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Two-compartment model

Q(t) = QP(t) + QI (t)

dQP (t)
dt = αAIF (t) −(k12 + β)QP(t) +k21QI (t)

dQI (t)
dt = k12QP(t) −k21QI (t)

Initial condition at time t0 :QP(t0) = QI (t0) = 0
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Stochastic extension

Drawback of ordinary differential equations
• Smooth theoretical model
• Failure to capture

• Fluctuations in plasma/interstitium permeability
• Movement of patient (breathing)

• Numerical instability

Stochastic approach
• Random fluctuations around deterministic model
• Keep same interpretation of physiological parameters
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Stochastic model

Observations

yi = QP(ti ) + QI (ti ) + σεi

εi ∼ N (0, 1)

Stochastic model

dQP(t) = (αAIF (t) − (k12 + β)QP(t) +k21QI (t) ) dt +σ1dW 1
t

dQI (t) = (k12QP(t) −k21QI (t)) dt +σ2dW 2
t

• W 1
t , W 2

t : independent Brownian motions
• σ1, σ2: unknown standard deviations

2008/08/27 9 / 25



A Samson

Introduction

Data

Model
Deterministic
model
Stochastic
model

Estimation
Direct
approach
Kalman filter

Theoretical
results

Application

Discussion

Objectives
Our aim: Exact Maximum likelihood estimates of our model

• Bi-dimensional Ornstein-Uhlenbeck model
• Partially observed
• Noisy discrete observations

Estimation methods

• Minimization of a contrast (Genon-Catalot and Jacod ’93,
Kessler ’97)

• Martingale estimating functions (Bibby and Sorensen ’95)
• Approximation of density distribution (Ditlevsen et al ’05,

Picchini et al ’06)
• ...

⇒ Development of an exact MLE procedure
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Maximum likelihood estimation

Two ways of computing the exact likelihood p(y ; θ) with
θ = (α, β, k12, k , σ1, σ2, σ)

1 Direct approach: calculus of joined data (y0, . . . , yn)
distribution

2 Discretization approach: Kalman Filter
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Matricial formulation
Set U(t) = (S(t), QI (t))′ with S(t) = QP(t) + QI (t)

dUt = (G Ut + F (t))dt + ΣdWt

U(t0) = U0

yi = (1 0) U(ti ) + σεi

with λ = k12 and k = k12 + k21

F =

„
αAIF (t)

0

«
, G =

„
−β β
λ −k

«
, Σ =

„
σ1 σ2
0 σ2

«

Result: G is diagonalizable

• D diagonal matrix of eigenvalues (µ1, µ2) of G
• P transit matrix of eigenvectors
• new process X = P−1U in the new basis
• Γ = P−1Σ
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Solving the model
SDE in the new basis

dXt = (D Xt + P−1F (t))dt + ΓdWt

X (t0) = P−1U0

yi = (1 1) X (ti ) + σεi

Result:
• X (t + h)|X (t) ∼ N2

(
eDhX (t) + B (t, t + h) , Q (t, t + h)

)
where

B(t, t + h) = eD(t+h)
Z t+h

t
e−DsP−1F (s)ds

Q(t, t + h) =

0@ e(µk+µk′ )h − 1

µk + µk′
(ΓΓ′)kk

′
1A

1≤k,k′≤2

• Stationnary distribution for (Xt) if α = 0 (F (s) = 0)
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1. Direct approach

Continuous model solution

• X (t) bi-dimensional Gaussian process
• Explicit distribution, with covariance matrix of dimension

2n × 2n

Computation of likelihood
• y Gaussian vector
• Expectation and variance derived from those of X

Maximization of exact likelihood
• Gradient descent but no direct way of computing the exact

gradient of the likelihood
• Numerical method
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2. Discretization approach

Discretization of SDE: Xi = X (ti )

Xi = AiXi−1 + Bi + ηi

ηi ∼ N (0, Qi )

X0 = x0

yi = HXi + σεi

with

Ai = exp(D (ti − ti−1)), Bi = B(ti−1, ti ), Qi = Q(ti−1, ti ), H = (1 1)

⇒ Hidden Markov Model
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Likelihood

Computation of exact likelihood of the discrete model

L(y0, . . . , yn; θ) = p(y0; θ)
n∏

i=1

p(yi |y0, . . . , yi−1; θ)

= L(y0, . . . , yn−1; θ)p(yn|y0, . . . , yn−1; θ)

From calculus on Gaussian distributions, we deduce

yi |y0, . . . , yi−1; θ ∼ N (mi (θ), Vi (θ))

where mi (θ) and Vi (θ) depend on p(Xi |y0, . . . , yi−1; θ)
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Kalman filter
Kalman filter computes iteratively expectations and variances

• p(Xi |y0, . . . , yi−1; θ) (prediction distribution)
• p(Xi |y0, . . . , yi ; θ) (filter distribution)

We deduce iterative computations of

• Expectation and variance of yi |y0, . . . , yi−1; θ

mi (θ) = Fθ(mi−1(θ)) and Vi (θ) = Gθ(Vi−1(θ))

• Log-likelihood l0:i (θ) = log L(y0, . . . , yi ; θ)

l0:i (θ) = l0:i−1(θ) + log p(yi |y0, . . . , yi−1; θ)

= l0:i−1(θ)−
1
2

log(2πVi (θ))−
1
2

(yi −mi (θ))
2

Vi (θ)

⇒ No inversion of large covariance matrix
2008/08/27 17 / 25
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Likelihood maximization

Maximization using a gradient descent method

• Need to compute the gradient and hessian of the
log-likelihood

Assumption
• Equally spaced time observations ti − ti−1 = ∆

• New parametrization

Ai = A(θ) =

(
θ1 0
0 θ2

)
Qi = Q(θ) =

(
θ3 θ5
θ5 θ4

)
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Gradient descent

Iterative computation of
• ∂mi (θ)/∂θ and ∂Vi (θ)/∂θ by deriving

mi (θ) = Fθ(mi−1(θ))

Vi (θ) = Gθ(Vi−1(θ))

• Gradient and hessian of the log likelihood by deriving

l0:i (θ) = l0:i−1(θ)−
1
2

log(2πVi (θ))−
1
2

(yi −mi (θ))
2

Vi (θ)

⇒ Efficient way to implement the gradient descent method and
to obtain maximum likelihood estimate
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Theoretical results
Link with an ARMA model

Proposition
Under assumption α = 0,
• The process (yi )i∈Z is ARMA(2,2)
• The spectral density of (yi )i∈Z has an explicit form

f (u, θ) = γ(0)+γ(1)2 cos(u)+γ(2)2 cos(2u)
1+(θ1+θ2)2+θ2

1θ2
2−2(θ1+θ2)(1+θ1θ2) cos(u)+2 cos(2u)θ1θ2

Identifiability problem

• From spectral density, only five parameters (out of 6) are
identifiable:
(θ1 + θ2),θ1θ2, γ(0), γ(1), γ(2)

• From simulations, better results obtained when σ2 is fixed
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Consistency of the MLE

θ0 the true value of parameter
Asymptotic information matrix defined by

for i , j ∈ {1, . . . , 5} I (θ)i ,j =

∫
T

∂

∂θi
log f (u, θ)

∂

∂θj
log f (u, θ)du

Proposition
Let θ̂n be a maximum likelihood estimator of θ0 based on
(y0, . . . , yn). Then, θ̂n → θ0 a.s. as n →∞. Moreover, if I (θ0)
is invertible,

√
n(θ̂n − θ0) converges in distribution:
√

n(θ̂n − θ0) −→n→∞
N (0, I−1(θ0))

Proof. Times series results (Brockwell and Davis ’91).
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Application to real data
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Direct approach
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α = 0.015, β = 0.024, k12 = 0.014, k21 = 0.014, δ = 5.94
σ1 = 1.07, σ2 = 0.07, σ = 2.96
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Kalman approach
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Discussion

Conclusion

• Adequate physiological model
• Exact maximum likelihood estimation of model parameters

Perspectives

• Map of the microcirculation estimated parameters on all
the voxels

• Expectation-Maximization algorithm with smoother
Kalman algorithm (work on progress)

• Extension of SDE model to ensure positive solutions
• Extension to non equidistant observations times
• Extension to d -dimensional O-U partially observed process
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