Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Estimation of a partially observed Ornstein-Uhlenbeck model in anti-cancer therapy

Adeline Samson

Current work in collaboration with D Balvay, CA Cuenod, B Favetto, V

Genon-Catalot and Y Rozenholc

MAP5, Université Paris Descartes

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Context

Anti-angiogenesis treatments

- Promising anti-cancer therapy
- Need to evaluate effects of drugs in vivo
- Estimation of tissue microcirculation parameters
- Difference in microcirculation parameters along time = measure of treatment impact

э

• • = • • = •

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Acquisition Protocol

Experiment

- Patient with ovary cancer
- Bolus injection of contrast agent
- Dynamic acquisition of gradient-echo MRI

Observation times

- Beginning 10 seconds after injection
- 130 images, every 2.4 seconds

Tissue microcirculation parameters

- Model of contrast agent pharmacokinetic
- Estimation of in vivo tissue microcirculation parameters

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Applicatior

Discussion

Example of one image in the sequence

High level of noise

2008/08/27

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction

Data

Model

Deterministic model

Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Observation model

Measurement

- Intensity of gray level on a voxel I(t)
- Assumption : *I*(*t*) proportional to the quantity of contrast agent in voxel *Q*(*t*)

$$I(t)-I(0)=Q(t)$$

Observations

- Discrete times t_0, \ldots, t_n
- Noisy observations y

$$y_i = Q(t_i) + \sigma \varepsilon_i$$

 $\varepsilon_i \sim \mathcal{N}(0, 1)$

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Data

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Quantity of contrast agent in

Pharmacokinetic model

- Arterial voxel: Arterial Input Function (AIF)
 - Assumed to be known
- Non arterial voxel $Q(t) = Q_P(t) + Q_I(t)$
 - Plasma: $Q_P(t)$
 - Interstitium: $Q_I(t)$

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-compartment model

Data

Model

model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

$$Q(t) = Q_P(t) + Q_I(t)$$

$$\frac{dQ_P(t)}{dt} = \alpha AIF(t) - (k_{12} + \beta)Q_P(t) + k_{21}Q_I(t)$$

$$\frac{dQ_I(t)}{dt} = k_{12}Q_P(t) - k_{21}Q_I(t)$$

Initial condition at time $t_0: Q_P(t_0) = Q_I(t_0) = 0$

э

Introduction

Data

Model

Deterministic model

Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Stochastic extension

Drawback of ordinary differential equations

- Smooth theoretical model
- Failure to capture
 - Fluctuations in plasma/interstitium permeability
 - Movement of patient (breathing)
- Numerical instability

Stochastic approach

- Random fluctuations around deterministic model
- Keep same interpretation of physiological parameters

• • = • • = •

Introduction

Data

Model

Deterministic model

Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

Stochastic model

Observations

$$egin{array}{rcl} y_i &=& Q_P(t_i) + Q_I(t_i) + \sigma arepsilon_i \ arepsilon_i &\sim& \mathcal{N}(0,1) \end{array}$$

Stochastic model

$$dQ_P(t) = (\alpha AIF(t) - (k_{12} + \beta)Q_P(t) + k_{21}Q_I(t)) dt + \sigma_1 dW_t^1$$

$$dQ_I(t) = (k_{12}Q_P(t) - k_{21}Q_I(t)) dt + \sigma_2 dW_t^2$$

- W_t^1 , W_t^2 : independent Brownian motions
- σ_1 , σ_2 : unknown standard deviations

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Image: Image:

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Objectives

Our aim: Exact Maximum likelihood estimates of our model

- Bi-dimensional Ornstein-Uhlenbeck model
- Partially observed
- Noisy discrete observations

Estimation methods

. . .

- Minimization of a contrast (Genon-Catalot and Jacod '93, Kessler '97)
- Martingale estimating functions (Bibby and Sorensen '95)
- Approximation of density distribution (Ditlevsen et al '05, Picchini et al '06)

 \Rightarrow Development of an exact MLE procedure

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Maximum likelihood estimation

Two ways of computing the exact likelihood $p(y; \theta)$ with $\theta = (\alpha, \beta, k_{12}, k, \sigma_1, \sigma_2, \sigma)$

- 1 Direct approach: calculus of joined data (y_0, \ldots, y_n) distribution
- 2 Discretization approach: Kalman Filter

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

Matricial formulation

Set $U(t) = (S(t), Q_I(t))'$ with $S(t) = Q_P(t) + Q_I(t)$

$$dU_t = (G U_t + F(t))dt + \Sigma dW_t$$

$$U(t_0) = U_0$$

$$y_i = (1 \ 0) U(t_i) + \sigma \varepsilon_i$$

with $\lambda = k_{12}$ and $k = k_{12} + k_{21}$

$$F = \begin{pmatrix} \alpha AIF(t) \\ 0 \end{pmatrix}, \quad G = \begin{pmatrix} -\beta & \beta \\ \lambda & -k \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1 & \sigma_2 \\ 0 & \sigma_2 \end{pmatrix}$$

Result: *G* is diagonalizable

- D diagonal matrix of eigenvalues (μ_1, μ_2) of G
- P transit matrix of eigenvectors
- new process $X = P^{-1}U$ in the new basis

•
$$\Gamma = P^{-1}\Sigma$$

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Applicatior

Discussion

Solving the model

SDE in the new basis

$$dX_t = (D X_t + P^{-1}F(t))dt + \Gamma dW_t$$

$$X(t_0) = P^{-1}U_0$$

$$y_i = (1 1) X(t_i) + \sigma \varepsilon_i$$

Result:

• $X(t+h)|X(t) \sim \mathcal{N}_2\left(e^{Dh}X(t) + B(t,t+h), Q(t,t+h)\right)$ where

$$B(t, t+h) = e^{D(t+h)} \int_{t}^{t+h} e^{-Ds} P^{-1} F(s) ds$$
$$Q(t, t+h) = \left(\frac{e^{(\mu_{k}+\mu_{k'})h}-1}{\mu_{k}+\mu_{k'}} (\Gamma\Gamma')^{kk'} \right)_{1 \le k, k' \le 2}$$

(日) (周) (日) (日)

• Stationnary distribution for (X_t) if $\alpha = 0$ (F(s) = 0)

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

1. Direct approach

Continuous model solution

- X(t) bi-dimensional Gaussian process
- Explicit distribution, with covariance matrix of dimension $2n\times 2n$

Computation of likelihood

- y Gaussian vector
- Expectation and variance derived from those of X

Maximization of exact likelihood

- Gradient descent but no direct way of computing the exact gradient of the likelihood
- Numerical method

・聞き ・ 国を ・ 国を

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

2. Discretization approach

Discretization of SDE:
$$X_i = X(t_i)$$

$$X_{i} = A_{i}X_{i-1} + B_{i} + \eta_{i}$$

$$\eta_{i} \sim \mathcal{N}(0, Q_{i})$$

$$X_{0} = x_{0}$$

$$y_{i} = HX_{i} + \sigma\varepsilon_{i}$$

with

 $A_i = \exp(D(t_i - t_{i-1})), \quad B_i = B(t_{i-1}, t_i), \quad Q_i = Q(t_{i-1}, t_i), \quad H = (1 \ 1)$

\Rightarrow Hidden Markov Model

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretic: results

Applicatio

Discussion

Likelihood

1

Computation of exact likelihood of the discrete model

$$L(y_0, ..., y_n; \theta) = p(y_0; \theta) \prod_{i=1}^n p(y_i | y_0, ..., y_{i-1}; \theta)$$

= $L(y_0, ..., y_{n-1}; \theta) p(y_n | y_0, ..., y_{n-1}; \theta)$

From calculus on Gaussian distributions, we deduce

$$y_i|y_0,\ldots,y_{i-1};\theta \sim \mathcal{N}(m_i(\theta),V_i(\theta))$$

where $m_i(\theta)$ and $V_i(\theta)$ depend on $p(X_i|y_0, \ldots, y_{i-1}; \theta)$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretic results

Applicatio

Discussion

Kalman filter

Kalman filter computes iteratively expectations and variances

- $p(X_i|y_0, \ldots, y_{i-1}; \theta)$ (prediction distribution)
- $p(X_i|y_0,\ldots,y_i;\theta)$ (filter distribution)

We deduce iterative computations of

• Expectation and variance of $y_i | y_0, \ldots, y_{i-1}; \theta$

$$m_i(heta) = F_ heta(m_{i-1}(heta))$$
 and $V_i(heta) = G_ heta(V_{i-1}(heta))$

• Log-likelihood
$$l_{0:i}(\theta) = \log L(y_0, \dots, y_i; \theta)$$

 $l_{0:i}(\theta) = l_{0:i-1}(\theta) + \log p(y_i|y_0, \dots, y_{i-1}; \theta)$
 $= l_{0:i-1}(\theta) - \frac{1}{2} \log(2\pi V_i(\theta)) - \frac{1}{2} \frac{(y_i - m_i(\theta))^2}{V_i(\theta)}$

 \Rightarrow No inversion of large covariance matrix

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Likelihood maximization

Maximization using a gradient descent method

• Need to compute the gradient and hessian of the log-likelihood

Assumption

- Equally spaced time observations $t_i t_{i-1} = \Delta$
- New parametrization

$$A_i = A(\theta) = \begin{pmatrix} \theta_1 & 0 \\ 0 & \theta_2 \end{pmatrix} Q_i = Q(\theta) = \begin{pmatrix} \theta_3 & \theta_5 \\ \theta_5 & \theta_4 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Applicatior

Discussion

Gradient descent

Iterative computation of

• $\partial m_i(\theta) / \partial \theta$ and $\partial V_i(\theta) / \partial \theta$ by deriving

$$\begin{array}{lll} m_i(\theta) &=& F_{\theta}(m_{i-1}(\theta)) \\ V_i(\theta) &=& G_{\theta}(V_{i-1}(\theta)) \end{array}$$

• Gradient and hessian of the log likelihood by deriving

$$I_{0:i}(\theta) = I_{0:i-1}(\theta) - \frac{1}{2}\log(2\pi V_i(\theta)) - \frac{1}{2}\frac{(y_i - m_i(\theta))^2}{V_i(\theta)}$$

イロト イポト イヨト イヨト

 \Rightarrow Efficient way to implement the gradient descent method and to obtain maximum likelihood estimate

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

Theoretical results

Link with an ARMA model

Proposition

Under assumption $\alpha = 0$,

- The process $(y_i)_{i\in\mathbb{Z}}$ is ARMA(2,2)
- The spectral density of $(y_i)_{i\in\mathbb{Z}}$ has an explicit form

 $f(u,\theta) = \frac{\gamma(0) + \gamma(1)2\cos(u) + \gamma(2)2\cos(2u)}{1 + (\theta_1 + \theta_2)^2 + \theta_1^2 \theta_2^2 - 2(\theta_1 + \theta_2)(1 + \theta_1 \theta_2)\cos(u) + 2\cos(2u)\theta_1 \theta_2}$

Identifiability problem

• From spectral density, only five parameters (out of 6) are identifiable:

 $(\theta_1 + \theta_2), \theta_1 \theta_2, \ \gamma(0), \ \gamma(1), \ \gamma(2)$

• From simulations, better results obtained when σ^2 is fixed

(日) (同) (三) (三)

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

Consistency of the MLE

θ_0 the true value of parameter Asymptotic information matrix defined by

for
$$i, j \in \{1, ..., 5\}$$
 $I(\theta)_{i,j} = \int_{\mathbb{T}} \frac{\partial}{\partial \theta_i} \log f(u, \theta) \frac{\partial}{\partial \theta_j} \log f(u, \theta) du$

Proposition

Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ_0 based on (y_0, \ldots, y_n) . Then, $\hat{\theta}_n \to \theta_0$ a.s. as $n \to \infty$. Moreover, if $I(\theta_0)$ is invertible, $\sqrt{n}(\hat{\theta}_n - \theta_0)$ converges in distribution:

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \underset{n \to \infty}{\longrightarrow} \mathcal{N}(0, I^{-1}(\theta_0))$$

Proof. Times series results (Brockwell and Davis '91).

• • = • • = •

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Application to real data

æ

イロト イポト イヨト イヨト

Direct approach

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

 α = 0.015, β = 0.024, k_{12} = 0.014, k_{21} = 0.014, δ = 5.94 σ_1 = 1.07, σ_2 = 0.07, σ = 2.96

2008/08/27

(4 冊) (4 回) (4 回)

Kalman approach

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretical results

Application

Discussion

 α = 0.015, β = 0.024, k_{12} = 0.014, k_{21} = 0.014, δ = 5.94 σ_1 = 1.07, σ_2 = 0.07, σ = 2.96

2008/08/27

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Data

Model

Deterministic model Stochastic model

Estimation

Direct approach Kalman filter

Theoretica results

Application

Discussion

Discussion

Conclusion

- Adequate physiological model
- Exact maximum likelihood estimation of model parameters

Perspectives

- Map of the microcirculation estimated parameters on all the voxels
- Expectation-Maximization algorithm with smoother Kalman algorithm (work on progress)
- Extension of SDE model to ensure positive solutions
- Extension to non equidistant observations times
- Extension to *d*-dimensional O-U partially observed process

・ 同 ト ・ ヨ ト ・ ヨ ト