Autoregressive models for maxima with atmospheric applications

Gwladys Toulemonde
Université Paris VI, France

AssimilEx-ANR project members

Journées MAS de la SMAI.

27/08/2008
Initial question: State-space models with maxima?

Linear autoregressive model for Gumbel maxima

Simulation results

Application to CH4 daily maxima

Generalization to the GEV distribution
Series of daily maxima of CH4 in Gif-sur-Yvette
The GEV distribution

\[
\lim_{n \to \infty} \mathbb{P}\{a_n^{-1}(\max_{1 \leq i \leq n} X_i - b_n) \leq x\} = \lim_{n \to \infty} F^n(a_n x + b_n) = H_\gamma(x)
\]

where

\[
H_\gamma(x) = \begin{cases}
\exp\left(-\left(1 + \gamma x\right)^{-\frac{1}{\gamma}}\right) & \text{with } x \text{ such that } 1 + \gamma x > 0, \text{ if } \gamma \neq 0 \\
\exp\left(-\exp(-x)\right) & \text{for all } x \in \mathbb{R}, \text{ if } \gamma = 0
\end{cases}
\]
Fig. 1: Gumbel QQplot (on the left) and scatter plot of successive values, i.e. \((X_t, X_{t+1})\) (on the right) corresponding to the daily maxima of CH4.
Our objective: Proposing state-space models that preserve the nature of maxima distributions.

Classical state-space models used in geophysics:

\(Y_t = F_t(X_t, \varepsilon_t) \) \hspace{1cm} \text{observation equation}

\(X_t = G_t(X_{t-1}, \eta_t) \) \hspace{1cm} \text{state equation}

where we suppose independence between and within noises \(\varepsilon_t \) and \(\eta_t \).

Classical extra assumptions:

• Gaussian noises
• Linearity for the observation and state equations

If a record occurs in \(Y_t \), then one expects \(Y_t \) to be a GEV. The problem is that a GEV distribution cannot be retrieved through a Gaussian additive state-space model.
A max-stable state-space model

Naveau and Poncet (2007)

\[Y_t = F_t X_t \vee \varepsilon_t \]
\[X_t = G_t X_{t-1} \vee \eta_t \]

where \(\varepsilon_t \) and \(\eta_t \) correspond to Frechet noises.

They proposed lower and upper bounds for \(X_t \).
A key linear relationship (Tawn, 1990)

\[
\text{Gumbel}(\mu_1 + \mu_2, \sigma/\alpha) = \mu_2 + \sigma \log S + \text{Gumbel}(\mu_1, \sigma)
\]

where \(\text{Gumbel}(\mu_1, \sigma) \) is a Gumbel r.v. and independent of \(S \) that is a positive \(\alpha \)-stable r.v. (\(\alpha \in (0, 1] \)) with Laplace transform

\[
\mathbb{E}(\exp(-uS)) = \exp(-u^\alpha), \text{ for all } u > 0
\]
Fougères et al. (2007): If

\[Y_t = F_t \log \left(\sum_{a \in A} c_{t,a} S_a \right) + \varepsilon_t, \text{ with } t = 1, \ldots, T, \]

where \(\{c_{t,a} \geq 0\}, \{S_a, a \in A\} \) are independent positive \(\alpha \)-stable variables, \(\varepsilon_t \) follows an iid Gumbel(\(\mu_t, F_t \)), and all variables are mutually independent, then

\[\mathbb{P}(Y_1 \leq x_1, \ldots, Y_T \leq x_T) = \prod_{a \in A} \exp \left(- \left(\sum_{t \in T} c_{t,a} e^{-\frac{x_t - \mu_t}{F_t}} \right)^\alpha \right) \]
Gumbel state-space model

Naveau and Poncet (2007)

\[Y_t = F_t \log U_t + \varepsilon_t \]
\[U_t = G_t U_{t-1} + S_t \]

where \(\varepsilon_t \) corresponds to an iid Gumbel noise and \(S_t \) represents an iid positive \(\alpha \)-stable noise.

This implies

\[Y_t = F_t \log \left(\sum_{i=0}^{\infty} c_{t,i} S_{t-i} \right) + \varepsilon_t \]

i.e. \(Y_t \) are Gumbel distributed. Moreover, the state-space model is linear!
Our objective: To propose state-space models that preserve the nature of maxima distributions.

Classical linear state-space models:

\[Y_t = F_t X_t + \varepsilon_t \]
\[X_t = G_t X_{t-1} + \eta_t \]

where we suppose independence between and within noises \(\varepsilon_t \) and \(\eta_t \).

A key linear relationship (Tawn, 1990)

\[
\text{Gumbel}(\mu_1 + \mu_2, \sigma/\alpha) = \mu_2 + \sigma \log S + \text{Gumbel}(\mu_1, \sigma)
\]

where \(\text{Gumbel}(\mu_1, \sigma) \) is a Gumbel r.v. and independent of \(S \) that is a positive \(\alpha \)-stable \((\alpha \in (0, 1]) \) with Laplace transform

\[
\mathbb{E}(\exp(-uS)) = \exp(-u^\alpha), \text{ for all } u > 0
\]
Result (1)

Let \(\{X_t, t \in \mathbb{Z}\} \) be a stochastic process defined by the recurrence relation

\[
X_t = \alpha X_{t-1} + \alpha \sigma \log S_t
\] (1)

where \(\sigma \in \mathbb{R}_+^* \).

Equation (1) has a unique strictly stationary solution,

\[
X_t = \sigma \sum_{j=0}^{\infty} \alpha^{j+1} \log S_{t-j}
\] (2)

and \(X_t \) follows a Gumbel \((0, \sigma)\) distribution, \(\forall t \in \mathbb{Z} \).
Fig. 2: Simulated time series X_t from proposed model, with $t = 1, \ldots, 200$. We set $\sigma = 2$.
Fig. 3: Scatter plots of successive values, i.e. X_t versus X_{t+1} from the three simulated time series of the previous figure.

Covariance $\mathbb{C}ov(X_t, X_{t-h}) = \mathbb{V}ar(X_0)\alpha^{|h|}$
Natural estimators of μ and σ based on the method of moments are

$$\hat{\mu} = \bar{X} - \frac{\delta \sqrt{6} s}{\pi}$$

$$\hat{\sigma} = \frac{\sqrt{6} s}{\pi}$$

where $\bar{X} = \frac{1}{T} \sum_{t=1}^{T} X_t$, $s^2 = \frac{1}{T} \sum_{t=1}^{T} (X_t - \bar{X})^2$ and where δ is the Euler’s constant.

An estimator for α could be the following

$$\hat{\alpha} = \frac{1}{T} \sum_{t=1}^{T-1} \frac{(X_t - \bar{X})(X_{t+1} - \bar{X})}{s^2}.$$
Asymptotic behavior of the three estimators

Result (2)

The estimators of the three parameters μ, σ and α are consistent (a.s.).

Result (3)

\[
\sqrt{T} \begin{pmatrix}
\hat{\mu} - \mu \\
\hat{\sigma} - \sigma \\
\hat{\alpha} - \alpha
\end{pmatrix}
\]

is asymptotically normal with null expectation and covariance matrix defined as follows

\[
\begin{pmatrix}
\frac{\pi^2 \sigma^2}{6} \frac{1+\alpha}{1-\alpha} - \frac{12\delta \sigma^2 \zeta(3)(1+\alpha+\alpha^2)}{\pi^2(1-\alpha^2)} + \frac{11\delta^2 \sigma^2(1+\alpha^2)}{10(1-\alpha^2)} \\
\frac{6\sigma^2 \zeta(3)(1+\alpha+\alpha^2)}{\pi^2(1-\alpha^2)} - \frac{11\delta \sigma^2(1+\alpha^2)}{10(1-\alpha^2)} \\
-\alpha \sigma \delta
\end{pmatrix}

\begin{pmatrix}
\frac{6\sigma^2 \zeta(3)(1+\alpha+\alpha^2)}{\pi^2(1-\alpha^2)} - \frac{11\delta \sigma^2(1+\alpha^2)}{10(1-\alpha^2)} \\
\frac{11\sigma^2(1+\alpha^2)}{10(1-\alpha^2)} \\
\alpha \sigma \\
1-\alpha^2
\end{pmatrix}
\]
Asymptotic dependence parameters

Result (5)

- **The upper tail dependence parameter χ defined as follows**
 \[
 \chi = \lim_{x \to \infty} \frac{\mathbb{P}(X_{t-1} > x \text{ and } X_{t} > x)}{\mathbb{P}(X_{t-1} > x)}
 \]
 is equal to zero (asymptotic independence).

- **The dependence parameter $\overline{\chi}$ defined as follows**
 \[
 \overline{\chi} = \lim_{x \to \infty} \frac{2 \log \mathbb{P}(X_{t-1} > x)}{\log \mathbb{P}(X_{t-1} > x, X_{t} > x)} - 1
 \]
 provides a measure which increases with dependence strength and is equal to $\alpha/(2 - \alpha) \in (0, 1)$.
Simulations

- 1000 samples
- Sample sizes $n = 50, 100, \ldots, 1000$
- $\alpha \in \{0.2, 0.5, 0.8\}$
- $\mu = 0$ and $\sigma = 2$
- for each parameter: the mean of the estimations and also the first and the third quartiles
Finite sample behavior of the estimators of μ and σ

Fig. 4: Mean (dashed line), first and third quartiles (dotted-dashed lines) for different sample sizes in the abscissa $n \in \{50, 100, \ldots, 1000\}$.

$\alpha = 0.2$ \hspace{1cm} $\alpha = 0.5$ \hspace{1cm} $\alpha = 0.8$
Daily maxima of CH4

Fig. 5: Series of daily maxima of CH4 in Gif-sur-Yvette.
Fig. 6: Gumbel QQplot (on the left) and scatter plot of successive values, i.e. (X_t, X_{t+1}) (on the right) corresponding to the daily maxima of CH4.
One-step prediction (1/2)

1000 estimations of $X_t | X_{t-1} = x$, $t = 1, \ldots, T - 1$

- According to the proposed Gumbel model
 $$X_t = \alpha X_{t-1} + \alpha \sigma \log S_t$$

- According to the classical Gaussian model
 $$X_t = \alpha X_{t-1} + \varepsilon_t$$

→ White histograms
We compare these white histograms with shaded areas which are the histograms of our daily maxima of CH4.
Daily maxima of CH4

Fig. 7: Histograms of CH4 daily maxima previsions according to Gumbel model (on the left) and Gaussian model (on the right). The shaded histograms represent CH4 daily maxima.
One-step prediction (2/2)

- We compute the estimators of the three parameters on a first period, here from 2002 to the middle of 2006.

- For the second part of 2006, we compute 1000 \(\hat{X}_{t+1} = \hat{\alpha} x_t + \hat{\alpha} \hat{\sigma} \log S_{t+1} \) with \(x_t \) the observed value at time \(t \) and \(S_{t+1} \) a positive \(\hat{\alpha} \)-stable random variable.

- We deduce the empirical quartiles of the distribution of \(\hat{X}_{t+1} | X_t = x_t \).
Daily maxima of CH4

Fig. 8: Validation of the one-step previsions of methane daily maxima on the second part of the year 2006.
Generalization to the GEV distribution

Let E be a random variable from a GEV(μ, σ, γ).

- If γ is strictly negative then $-\log(\mu - \sigma/\gamma - E)$ follows a Gumbel($\log(-\gamma/\sigma), -\gamma$).
- If γ is strictly positive then $\log(E - \mu + \sigma/\gamma)$ follows a Gumbel($\log(\sigma/\gamma), \gamma$).

Result (6)

$$X_t = \mu - \frac{\sigma}{\gamma} + \left(X_{t-1} - \mu + \frac{\sigma}{\gamma} \right)^\alpha \times S_t^\alpha \times \left(\frac{\sigma}{\gamma} \right)^{1-\alpha}$$

where $(\mu, \sigma, \gamma) \in \mathbb{R} \times \mathbb{R}^*_+ \times \mathbb{R}_*$.

Equation (3) has a unique strictly stationary solution given by

$$X_t = \mu - \frac{\sigma}{\gamma} + \frac{\sigma}{\gamma} \prod_{j=0}^{\infty} (S_{t-j})^{\gamma \alpha j + 1}$$

and X_t follows a GEV(μ, σ, γ) distribution, $\forall \ t \in \mathbb{Z}$.
Gumbel state-space model

\[Y_t = F_t(\alpha X_t + \alpha \sigma \log \varepsilon_t) \]
\[X_t = \alpha X_{t-1} + \alpha \sigma \log S_t \]

where \(\varepsilon_t \) and \(S_t \) two iid positive \(\alpha \)-stable noises. This implies that \(Y_t \) are Gumbel(0, \(F_t \sigma \)).

- Additive model, \(X_t \) and \(Y_t \) are both Gumbel
- \(G_t \) has to be equal to \(\alpha \in (0, 1) \) and \(Y_t \) has a specific form.

Thank you for your attention!
Initial question: State-space models with maxima?
Linear autoregressive model for Gumbel maxima
Simulation results
Application to CH4 daily maxima
Generalization to the GEV distribution

References

Morales' state-space model (2005)

\[Y_t = \mu + \sigma \frac{X_t^\gamma - 1}{\gamma} + \varepsilon_t \]

\[X_t = [\beta \eta_t] \lor [(1 - \beta)\eta_{t-1}] \]

where \(a \lor b = \max(a, b) \), \(\eta_t \) unit Fréchet iid r.v. and \(\varepsilon_t \) Gaussian noise.

Note: \(\mu + \sigma \frac{X_t^\gamma - 1}{\gamma} \) is GEV(\(\mu, \sigma, \xi \)).
Joint distribution of the vector $X_h = (X_t, \ldots, X_{t-h})^t$, $h > 0$

Result (4)

The characteristic function of $X_h = (X_t, \ldots, X_{t-h})^t$, $h > 0$, noted $\mathbb{E}(e^{i\langle u, X_h \rangle})$ is

$$\Gamma \left(1 - i\sigma \sum_{j=0}^{h} u_j \alpha^{h-j} \right) \prod_{j=0}^{h-1} \frac{\Gamma \left(1 - i\sigma \sum_{k=0}^{j} u_k \alpha^{j-k} \right)}{\Gamma \left(1 - i\sigma \sum_{k=0}^{j} u_k \alpha^{j-k+1} \right)}.$$
Finite sample behavior of the estimator of α

Fig. 9: Mean (dashed line), first and third quartiles (dotted-dashed lines) for different sample sizes in the abscissa $n \in \{50, 100, \ldots, 1000\}$.

- $\alpha = 0.2$
- $\alpha = 0.5$
- $\alpha = 0.8$