
Introduction
Model setup

Hedging error asymptotics
Applications

Asymptotic analysis of hedging errors in models
with jumps

Ekaterina Voltchkova
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Hedging problem: introduction

We have a financial asset with price St modeled by a stochastic
process. For example,

dSt = rStdt + σStdWt .

An option on this asset is a derivative product depending on St .
Its payoff at a future date T is modeled by a random variable HT .
For example,

HT = max(ST − K , 0).

Hedging problem: approach HT by a dynamic portfolio containing
bonds and stock St

HT ≈ VT =

∫ T

0
φ0

t dBt +

∫ T

0
φtdSt .
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Example: delta-hedging in diffusion models

Suppose that stock price St is a diffusion process:

dSt

St
= µ(t,St)dt + σ(t,St)dWt

Consider a European option with terminal payoff HT = h(ST ). Its
price has the form Ct = C (t,St).

Then there exists a hedging portfolio which replicates HT exactly:

HT =

∫ T

0
φtdSt

(we assume for simplicity r = 0)

with φt = ∂C
∂S (t,St).
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Hedging in incomplete markets

Incomplete market: exact replication impossible.

Hedging is now an approximation problem.

Industry practice: sensitivities to risk factors

Delta =
∂C (t,St)

∂S
: infinitesimal moves, hedge with stock

Gamma =
∂2C (t,St)

∂S2
: bigger moves; hedge with liquid options

Quadratic hedging: control the residual error

min
φ

E

(
c +

∫ T

0
φtdSt − HT

)2

All these strategies require a continuously rebalanced portfolio.
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Discrete hedging

Continuous rebalancing is unfeasible: in practice, the strategy
φt is replaced with a discrete strategy, leading to the hedging
error of the “second type”: error of approximating the
continuous portfolio with a discrete one.

The simplest choice is φn
t := φh[t/h], h = T/n.

This discretization error has only been studied in the case of
continuous processes.
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Discrete hedging: the complete market case

Bertsimas, Kogan and Lo ’98 introduced an asymptotic
approach allowing to study discrete hedging in continuous
time.

Suppose
dSt

St
= µ(t,St)dt + σ(t,St)dWt

and we want to hedge a European option with payoff h(ST ) using
delta-hedging φt = ∂C

∂S .
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CLT for hedging error

The discrete hedging error is defined by

εnT = h(ST )−
∫ T

0
φn

t dSt

Then εnT → 0 but the renormalized error
√

nεnT converges to√
T

2

∫ T

0

∂2C

∂S2
S2

t σ
2
t dW ∗

t ,

where W ∗ is a Brownian motion independent of W .

Hedging error decays as
√

h.

It is orthogonal to the stock price.

The amplitude is determined by the gamma ∂2C
∂S2
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Intuition

In complete market,

εnT =

∫ T

0
(φt − φn

t )dSt

Let St = Wt and consider the renormalized error over one hedging
interval:

1√
h

∫ h

0
(
∂C

∂S
(Wt)−

∂C

∂S
(0))dWt ≈

1√
2

∂2C

∂S2

1√
2h

(W 2
h − h)

The random variable 1√
2h

(W 2
h − h) has mean zero, variance h and

is uncorrelated with Wh.
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Approximating hedging portfolios

Hayashi and Mykland ’05 interpreted the discrete hedging error as
the error of approximating the “ideal” hedging portfolio

∫ T
0 φtdSt

with a feasible hedging portfolio
∫ T
0 φn

t dSt

• This makes sense in incomplete markets
Suppose φ and S are Itô processes:
dφt = µ̃tdt + σ̃tdWt and dSt = µtdt + σtdWt . Then

√
nεnt ⇒

√
T

2

∫ t

0
σ̃sσsdW ∗

s ,

where εnt :=

∫ t

0
(φs − φn

s )dSs .

• Weak convergence of processes in the Skorokhod topology on
the space D of càdlàg functions
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Discrete hedging in presence of jumps

The idea of approximating stochastic integrals goes back to
Rootzen (80)
More recently, results by Geiss (02), (06), (07) but all authors work
with continuous processes

Our idea: study the discretization error

εnt :=

∫ t

0
(φs− − φn

s−)dSs

in presence of jumps in the underlying and the hedging strategy.

• Some tools are available in the study of the approximation error
of the Lévy-driven Euler scheme by Jacod and Protter (98)
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Model setup: Lévy-Itô processes

Xt = X0 +

∫ t

0
µsds +

∫ t

0
σsdWs +

∫ t

0

∫
|z|≤1

γs(z)J̃(ds × dz)

+

∫ t

0

∫
|z|>1

γs(z)J(ds × dz).

J: Poisson random measure with intensity dt × ν

µ and σ are càdlàg (Ft)-adapted

γ: Ω× [0,T ]× R → R is such that (ω, z) 7→ γt(z) is
Ft × B(R)-measurable ∀t and t → γt(z) is càglàd ∀ω, z ;

γt(z)2 ≤ Atρ(z),

∫
|z|≤1

ρ(z)ν(dz) <∞

with ρ positive deterministic and A càglàd (Ft)-adapted.
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Model setup

The stock price S is a Lévy-Itô process with coefficients
µ, σ, γ;

The continuous-time strategy φ is a Lévy-Itô process
(driven by the same W and J) with coefficients µ̃, σ̃, γ̃.

The agent uses the discrete-time strategy φn
t := φh[t/h]

instead of the continuous-time strategy φt .
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Main result

The discretization error satisfies

√
nεnt →

√
T

2

∫ t

0
σs σ̃sdW ∗

s +
√

T
∑

i :Ti≤t

∆φTi

√
ζiξiσTi

+
√

T
∑

i :Ti≤t

∆STi

√
1− ζiξ

′
i σ̃Ti−.

W ∗ is a standard BM independent from W and J,

(ξk)k≥1 and (ξ′k)k≥1 are two sequences of independent N(0, 1),

(ζk)k≥1 is sequence of independent U([0, 1])

(Ti )i≥1 are the jump times of J enumerated in any order.
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The normalizing sequence

The normalizing factor need not be equal to
√

n.
Suppose φ and S move only by finite-intensity jumps. If there is
only one jump between tk and tk+1,∫ tk+1

tk

φt−dSt = φTi−∆STi
= φtk ∆STi

=

∫ tk+1

tk

φn
t−dSt

Therefore P[εnt 6= 0] = O(1/n) and

nαεnt → 0

in probability ∀α.
More generally, if S and φ are Lévy-Itô processes without diffusion
parts, √

nεnt → 0

in probability uniformly on t.
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Application: delta-hedging in a Lévy market

St = S0e
Xt , Xt = bt + σWt +

∫ t

0

∫
zJ(ds × dz)

C (t,S) = EQ [H(SeXT−t )], φt =
∂C

∂S
(t,St)

Suppose

The Lévy measure is finite and has a regular density (e.g.
Merton model).

The payoff function H is piecewise smooth with a finite
number of discontinuities.
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Application: delta-hedging in a Lévy market

Apply the Itô formula to get the decomposition for φ:

dφt = d
∂C (t,St)

∂S
=

{
∂2C

∂t∂S
+ (b + σ2/2)

∂2C

∂S2
St +

σ2

2

∂3C

∂S3
S2

t

}
dt

+σ
∂2C

∂S2
StdWt +

∫
R

(
∂C

∂S
(t,St−ez)− ∂C

∂S
C (t,St−)

)
J(dt×dz)

Under the hypotheses on H and ν it can be shown that the
coefficients do not explose in T : almost all trajectories end in a
point where H is smooth.
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Application: delta-hedging in a Lévy market

The main result then implies
√

nεnt → Zt with

Zt =

√
T

2

∫ t

0
σ2S2

s

∂2C

∂S2
dW ∗

s +
√

T
∑

∆
∂C

∂S

√
ζiξiσSs

+
√

T
∑

∆Ss

√
1− ζiξ

′
iσSs−

∂2C

∂S2
(s,Ss−)
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Application: risk of a hedged option position

If E [Z 2
t ] <∞, we can estimate the risk of a hedged option

position using

P[|εnt | ≥ δ] ≤ 1

δ
√

n
E [Z 2

t ]1/2

with (small jump size approximation)

E [Z 2
t ] ≈ T

2

∫ t

0
E

[
S4

s

(
∂2C

∂S2

)2
]

(σ4+σ2

∫
(ez−1)2(e2z+1)ν(dx)).

This should be compared to the MSE from market incompleteness:

E [ε2t ] ≈
1

4

∫ t

0
E

[
S4

s

(
∂2C

∂S2

)2
] ∫

(ez − 1)4ν(dx).
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Merci!
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Proof of the main results

Idea of the proof

Main tools:

If (X n) and (Y n) are two sequences of processes such that

sup
t
|X n

t − Y n
t | → 0 in probability

and X n → X weakly then Y n → X weakly.

Let (Ωm)m≥1 be a sequence of subsets of Ω with

lim
m

P(Ωm) = 1

If, for every m, Xn1Ωm → X1Ωm weakly, then Xn → X weakly.

Allows to reduce to bounded coefficients and bounded jumps.
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Idea of the proof

Step 1 Remove the big jumps

Step 2 Remove the small jumps

Step 3 Now we can write

St = S0 + Sd
t + Sc

t + S j
t

Sd
t =

∫ t

0

(
µs +

∫
γs(z)ν(dz)

)
ds

Sc
t =

∫ t

0
σsdWs

S j
t =

∫ t

0

∫
γs(z)J(ds × dz)

and φt = φ0 + φd
t + φc

t + φj
t .
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Idea of the proof

The leading terms in the hedging error are

1.
√

n

∫ t

0
(φc

s − φc,n
s )dSc

s →
√

T

2

∫ t

0
σs σ̃sdW ∗

s

as in Bertsimas et al. ’98

2.
√

n

∫ t

0
(φj

s − φj ,n
s )dSc

s (see next slides)

3.
√

n

∫ t

0
(φc

s − φc,n
s )dS j

s (see next slides)
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Idea of the proof

Notation: if Ti ∈ (tk , tk+1] then tk = θ(Ti ) and tk+1 = ψ(Ti ).

2.
√

n

∫ t

0
(φj

s − φj ,n
s )dSc

s ≈
√

n
∑

i :Ti≤t

∆φTi

∫ ψ(Ti )

Ti

σsdWs

(the two processes differ if there exist (tk , tk+1] with ≥ 2 jumps:
an event with probability O(1/n) )

≈
∑

i :Ti≤t

∆φTi
σTi

√
n

∫ ψ(Ti )

Ti

dWs →
√

T
∑

i :Ti≤t

∆φTi
σTi

√
ζiξi

since

√
n(Wψ(Ti )−WTi

)
d
=

√
n(ψ(Ti )− Ti )W1

d
≈

√
nU([0,T/n])N(0, 1)
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Similarly,

3.
√

n

∫ t

0
(φc

s − φc,n
s )dS j

s =
√

n
∑

i :Ti≤t

∆STi

∫ Ti

θ(Ti )
σ̃sdWs

≈
∑

i :Ti≤t

∆STi
σ̃θ(Ti )

√
n

∫ Ti

θ(Ti )
dWs

→
√

T
∑

i :Ti≤t

∆STi
σ̃Ti−

√
1− ζiξ

′
i

since √
n(WTi

−Wθ(Ti ))
d
≈

√
n(Ti − θ(Ti ))W1

and
Ti − θ(Ti ) = T/n − (ψ(Ti )− Ti ))
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